

Chapter	Contents	Page no.
Introduction	Contents "What can we do for you" Key to data-sheets A typical data-sheet Packaging Shielding gases for arc welding and cutting (EN 439) Handling, storage and drying Conversion of international standards Material test certificates	1 2 3 4 5, 6 7 8, 9 10
Unalloyed steel	Weldability of base materials European standard for base materials to be welded Data-sheets unalloyed steel	12 13, 14 15 - 68
Low alloyed steel	Weldability of base materials European standard for base materials to be welded Data-sheets low alloyed steel	69 70, 71 72 - 113
Stainless steel	Basic facts about stainless steel Classification of stainless steel grades Selecting the welding process Typical filler metals for welding stainless steel Typical filler metals for dissimilar joining stainless steel Data-sheets for stainless steel	114, 115 116 117, 118 119, 120 121 122 - 170
Repair & Maintenance	Introduction to hardfacing Product selector Filler metals used in surfacing (DIN 8555 Classification) Hardness conversion table Data-sheets repair & maintenance	171 172 173, 174 175 176 - 233
Aluminium	Introduction to welding aluminium Typical applications Product selector Data-sheets aluminium	234 235 - 237 238 239 - 258
Non ferrous	Introduction to copper & copper alloys Brazing with silver brazing rods Typical applications - silver brazing Data-sheets non ferrous	259 260, 261 262 263 - 291
Accessories	Data-sheets accessories	292 - 298
Classifications	A selection of typical AWS specifications and EN classifications	299 - 307
Search engine	Data-sheets per page and in alphabetical order	308 - 321

"What can we do for you"

HILCO Welding Consumables

Hilarius Haarlem Holland BV, the Netherlands, offers you a complete range of consumables for welding and soldering. Our greatest strength consists in the diversity of our product range. A spectrum from unalloyed to high-alloyed materials: stainless steels, high strength alloys, non-ferrous, aluminium and their respective alloy grades. All chemically right consumables, tested and considered as reliable by both our customers and internationally renowned classification institutes like: Lloyds Register of Shipping, ABS, DNV, TüV and others. Since 1987 Lloyds accredits Hilarius under ISO 9002.

We are in all aspects your ideal partner for new construction and manufacturing projects as well as for repair & maintenance. The highly specialised nature of these tasks requires distinctive approaches, which we cover with our extensive know-how, experience and complete range of products.

Our awareness of the specific demands of your operation will result in the optimum solution for any application. Hence we will never leave you to your own devices. Our experienced, highly motivated and service minded team will therefore gladly answer all your technical questions and propose economical solutions. In other words we will offer you a tailor-made solution - anywhere in the world.

Founded in 1915, Hilarius has a tradition in servicing customers in over 100 countries in the world. This has resulted in strong partnerships with welders, welding engineers, purchasing managers, field technicians, and construction & production managers. This is done either directly or through our well-established network of distributors. You can find us anywhere, even where you do not expect it - typical Dutch isn't!?

The registered brand name HILCO, in combination with the powerful green colour, is the keystone of our success. The famous five letters and their typical type casting is the icon for recognizing our quality products and unparalleled service.

Hilarius is a part of the Böhler Thyssen Welding organisation, one of the very best in the arc welding industry throughout the world. This gives you an additional guarantee that we are the solid partner for you, now and in the future.

At Hilarius we consider welding to be people's business. We are committed to enhance relationships with our partners in business while continuously seeking ways that lead to a positive contribution to your success.

If you are satisfied, we are satisfied - that is our mission, We are the smile behind the welder!

Our products	Applications for our products
Coated electrodes	Shipyards/offshore
Solid MIG/MAG wires	Pressure vessel & boiler industry
Welding rods for TIG and gas welding	Construction works
Wires and fluxes for sub arc welding	Chemical & petrochemical industry
Rutile, basic and metal cored wires	Heat exchanger industry
Cored wires for hardfacing, overlaying	Transport & lifting industry
High strength and creep resistant alloys	Gas & pipeline industry
High temperature alloys	Road & bridge construction industry
Nickel-, copper, cobalt-, aluminium alloys	Paper, cane sugar & steel mills
Hardfacing alloys	Mine & cement industry
Consumables for repair & maintenance	Repair shops
Brazing filler metals	Marine equipment

Key to data-sheets

Handbook

The product data-sheets of the individual HILCO Welding Consumables contain a detailed description of each respective product. The data-sheets are subdivided as follows:

Product identification

Brandname: mentioning the typical name of the respective product

Product ID: in sequence process - steel grade - typical application (optional)

Standard designation: classification according to AWS/ASME (Section II part C), EN and DIN-EN Werkstoffnr. In case an EN standard does not exist the DIN standard is mentioned.

Typical characteristics of the product

Gives information about the specific product, the product properties and our recommendations for welding current, polarity, welding positions, approvals and arc voltage which is the voltage at which you can strike the arc of the stick electrodes. The different welding positions which according to AWS and EN are indicated by code digits are symbolized in the product data-sheet as follows:

AWS: 1G, 2G, 3G, 4G, 5G, 6G **EN:** PA, PB, PC, PD, PE, PF, PG "All positions"

AWS: 1G, 2G, 3G, 4G, 5Gu EN: PA, PB, PC, PD, PE, PF "All positions, except vertical down"

AWS: 1G, 1F, 2G, 2F EN: PA, PB, PC "Flatt butt and fillet welds only"

Application / properties

A written description of the typical characteristics of the specific product, base materials to be welded mentioning the most important base metals for which the consumable is intended and its typical applications. In case the base metal or application is not included in the product data-sheet, or if you have any questions on the subject, your local HILCO Distributor or HILCO's customer service desk and our Technical Service Department will be pleased to help you. Call HILCO at +31-(0)23-531 91 00, Fax +31-(0)23-532 59 06, email: hilco@wxs.nl

Equivalent product in alternative welding process

HILCO offers you package solutions for the entire range of welding techniques for a large number of our products. These package solutions comprise HILCO Stick electrodes for SMAW, MIG/MAG Solid wires for GMAW, Cored wires for FCAW, TIG Solid wires for GTAW, Fluxes and wires for SAW, OAW Solid wires for Oxy-acetylene gas welding and brazing rods. The mentioned product indicates the first choice in an alternative welding process.

Chemical composition

The weld metal analysis (with the exception of SAW Solid wires) indicates the chemical composition of the deposit weld metal in weight % per element. The values indicated in the product data-sheets were determined by routine testing by our quality assurance department.

Mechanical properties

The specified mechanical properties are typical values and refer to all-weld metal. It must be taken into account that the mechanical properties of welded joints, depending on the base materials, dimensions of the component, welding position, welding parameters, preheating, interpass temperatures, post-weld-heat-treatment (PWHT), may deviate from those of the all-weld metal. The mechanical properties indicated in the product data-sheets are to be considered as general guidelines and they may vary according to the variations of product batches.

Disclaimer

The products and information in this handbook is based on today's knowledge about welding, welding techniques and product development. All technical data mentioned is not binding, alterations are possible at any time. If required please contact us for the latest developments.

© Hilarius Haarlem Holland BV - Februari 2003

Productname

Process - steel grade - typical application (optional)

Standard designation as per: AWS EN

DIN Werkstoffnr.

American Welding Society European standard (issued by CEN) German standard for industries DIN-EN identification for materials

Coating type, wire type or flux type (depending on the process):

Identifies the characteristics of the product concerned by means of either the chemical composition of the covering or core. In case of wire type the specific welding process concerned.

Arc voltage:

Typical starting voltage for stick electrodes. 42V means electrode is suitable for lighting current transformers (in Europe 220V) and transformers with 42V or S marking.

Current:

Identifies the current and polarity recommended. For DC current the sequence identifies our recommendations

DC current /

=-*

AC current = AC

electrode connected to positive pole = DCEP

DC current /
electrode connected
to negative pole
= DCEN

DC current /
negative pole with a
remark
= DCEN

Welding positions:

Identifies the welding position we recommend the consumable to be used in

All positions

All positions,

-

All positions, except vertical downwards

specifically in vertical down position

Flat butt and fillet welds only

Flat butt and fillet welds, limited vertical upwards

Approvals: consumable ABS American Bureau of Shipping is yearly tested and BV Bureau Veritas

approved by CL Controlas - Netherlands standard

international institutes DB+Ü Deutsche Bundesbahn (German Railways) + Uberwachungsvertrag (U-sign)

DNV Det Norske Veritas
GL Germanischer Lloyds
LR Lloyds Register of Shipping
TüV Technische überwachungs Verein
Force Force Institute - Danish standard

Tip colour: (if applicable) colour code for identification of stick electrodes, to be found on grip end of the electrode **Printing:** Brandname / EN classification / AWS specification (or parts of this sequence) printed on the electrodes' coating for example: HILCO Red Extra / E42 0 RC / E 6013

Equivalent product in alternative welding process:

Indicates the first choice for a consumable in another welding process, process identification acc. to ASME:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Shielded metal arc welding - stick electrodes - Manual metal arc welding - 111	Gas metal arc welding - MIG/MAG - 131/135	Flux cored arc welding - MAG welding - 136	Gas tungsten arc welding - TIG welding - 141	Submerged arc welding with wire electrode - 121	OAW - Oxy- acetylene welding - 311 / Brazing, soldering and braze welding - 9XX

Stick electrodes

Rutile and low-hydrogen electrodes are packed in cardboard packs with polyethylene shrink wrapping which are then packed in outer boxes made of corrugated board in units of 3 or 4.

Pipeweld electrodes for welding cross-country pipelines are packed in steel metals can to ensure moisture levels necessary for proper operation.

HILCHROME stainless steel electrodes are packed in hermetically sealed metal cans, which are then packed in outer boxes of corrugated board in units of 3. The metal HILcan offers the following advantages:

- Guaranteed completely dry electrodes, maintained in exactly the same quality controlled condition as immediately after production;
- Problem-free storage for an unlimited time in the originally sealed packaging;
- Protection from damage, climate changes and moisture pick-up;
- A weld metal deposit without any porosity when the electrodes are used within one single shift (8 hrs.) in any climate condition.

Hardmelt stick electrodes for depositing wear resistant layers are packed in the same way as rutile and low-hydrogen electrodes.

HILCO electrodes for welding Ni-base alloys, non ferrous alloys, cast iron grades and stellite are packed in small handy packages of max. 2 kilo with polyethylene shrink-wrapping which are then packed in outer boxes of corrugated board in units of 7.

HILCO stick electrodes for welding Aluminium are packed in hermetically sealed aluminium cans, which are then packed in outer boxes made of corrugated board in units of 6.

TIG rods, gas welding rods

TIG rods and gas welding rods are available in 5 kilo packs made of corrugated board or 5 kilo cardboard tubes.

Flux for submerged arc welding

HILCOWELD fluxes are normally supplied in polyethylene bags of 25 kilo. Other types of packaging are available upon request.

Key to data-sheets

Packaging

MIG/MAG wires, Cored wires and wires for submerged arc welding

Are spooled on various spool type, each spool is packed in a polyethylene bag and individually or combined (S100 spools, some S200 spools) packed in corrugated boxes. With the introduction of the EN standard for technical delivery conditions (EN 759) the name of the spool types have been amended as follows:

DIN 8559 "old name"	EN 759 "new name" (datasheets)	Туре	Typical weight * (kgs.)	Outer diameter (mm.)	Inner diameter (mm.)	Outer width (mm.)	Bore diameter (mm.)	
D 100	S 100	Spool	1,0	100 +/- 2	-	45 +0/-2	16,5 +1/-0	
D 200	S 200	Spool	5,0	200 +/- 3	-	55 +0/-3	50,5 +2,5/-0	
D 300	S 300	Spool	15,0	300 +/- 5	-	103 +0/-3	50,5 +2,5/-0	
K 300	B 300	Basket rim	15,0	300 +0/-5	180 +/- 2	100 +/- 3	-	
- "Sandvik"	BS 300	Basket spool	15,0	300 +/- 5	-	103 +0/-3	50,5 +2,5/-0	
K 415	B 415	Basket rim	25,0	415 +/- 5	300 +15/-0	70 +0/-15	-	
-	MP	Drums	250,0	-	-	-	-	
	weight indicates curate informat		tent of a spool.	Please consul	It the product d	ata-sheets of th	ne specific	
EN 759		Typical appli	cation					
S 100		Plastic spools	for orbital wel	ding				
S 200		Plastic spools	for usage in co	onfined areas				
S 300		Plastic spools	for universal u	sage				
B 300		Steel basket	rings for unive	ersal usage - to	o be used with	an adaptor		
BS 300		Steel basket rings with characteristics of D 300 spools - environment friendly						
B 415	•	Steel basket rings for Submerged arc welding wires						
MP		spools, reduci	Drums to improve your productivity. Each MP contains more than thirteen 15 kilo spools, reducing stop-and-go sequences to an absolute minimum. Ideal for automatic welding processes requiring high productivity.					

_ 1		Designation			Constituents in percent volume					
Group	Code	Mixture (data-	Oxid	ising	In	ert	Reducing	Un- reactive		
		sheet)	CO ₂	O ₂	Ar	He	H ₂	N ₂		
R	1	-			Bal.		>0-15		TIG, root	reducing
	2	-			Bal.		>15-35		shielding, plasma cutting	
1	1	Pure Ar			100				MIG, TIG,	inert
	2	-				100			root	
	3	ArHe			Bal.	>0-95			shielding	
M1	1	ArCO ₂	>0-5		Bal.		>0-5			Slightly oxidizing
	2	ArCO ₂	>0-5		Bal.					
	3	ArCO ₂ O ₂		>0-3	Bal.					
	4	ArCO ₂ O ₂	>0-5	>0-3	Bal.					
M2	1	ArCO ₂	>5-25		Bal.					
	2	ArO ₂		>3-10	Bal.					
	3	ArCO ₂ O ₂	>0-5	>3-10	Bal.				MAG	
	4	ArCO ₂ O ₂	>5-25	>0-8	Bal.					
M3	1	ArCO ₂ O ₂	>25-50	>10-15	Bal.					
	2	Pure Ar			Bal.					
	3	ArCO ₂ O ₂	>5-50	>8-15	Bal.					
С	1	CO ₂	100							Strongly
	2	CO ₂ O ₂	Bal.	>0-30						oxidizing
F	1				•			100	Plasma	Unreactive
	2						>0-50	Bal.	cutting, root shielding ted by an ext	reducing

Handling, storage and drying

Guideline

Handling, storage, drying stick electrodes

To ensure satisfactory weld quality, stick must be handled and stored properly before use. Electrode coatings are carefully designed to provide the necessary operating characteristics and weld properties required for each electrode type. Generally stick electrodes should be stored in their original packing. The storage facilities should have an infrastructure which makes the "first in - first out" principle possible. Electrodes are manufactured to be within acceptable moisture limits, consistent with the type of covering and strength of the weld metal. It is recommended to facilitate the storage room in such way that the electrodes are stored dry and safe. Moisturizing units should not be stored in the same area. Open packaging should be stored in special conditioned areas.

TYPICAL STORAGE CONDITIONS FOR STICK ELECTRODES

Storage of covered electrodes in cardboard boxes requires in general humidity and temperature controlled storage areas. Recommended storage conditions include:

- Temperature 18-25°C, relative humidity max. 60%
- Temperature 25-35°C, relative humidity max. 50%

Redrying of stick electrodes is recommended if the electrodes have picked up moisture or is imperiously required for low-hydrogen basic coated electrodes. We advise you to use the electrodes from a quiver after redrying.

	TYPICAL REDRYING	GUIDELINES FOR S	STICK ELECTRODES	
Electrodes for	Coating type	Redrying recommended	Redry temperature °C	Redrying time / h.
Unalloyed and low	A, AR, RC, R, RR	No		
alloy structural steel	RB, B	Yes	300-350	2 - 10
Pipelines	С	Not allowed!		
Fine grain steel	В	Yes	300-350	2 - 10
High temperature steel	R	No		
	В	Yes	300-350	2 - 10
Stainless and heat resisting steel	R	Yes	120-200	2 - 10
	RB, B	No		
Soft-martensitic steel	В	Yes	300-350	2 - 10
Duplex steel	R, RB	Yes	250-300	2 - 10
Hardfacing	R	No		
	RB, B	Yes	300-350	2 - 10
Ni-base alloys	All types	If necessary	120-300	2 - 10

In certain cases it may be reasonable to redry electrodes even when they are not mentioned in the table above. Should the coating exhibit and excessively high water content as a result of e.g. improper storage or other adverse influences, which is reflected by the welding behaviour and by increased spattering or formation of pores, the electrodes may be redried at 100-120°C for one hour. Electrodes in special packaging (f.i. HILcans) can be used without redrying and holding in a drying oven within a period of 8 hours after opening. After that the electrodes can be redried in accordance with the table above.

Handling, storage, drying cored wires

Unalloyed and low-alloyed cored wires are less sensitive to moisture pick-up since a metal sheath mainly covers the internal core. Nevertheless it is possible that the working environment affects the low hydrogen characteristics. For storage we recommend the same conditions as mentioned for stick electrodes (typical storage conditions for stick electrodes). For redrying we suggest to redry the wires at 150°C / max. 24 h.

Stainless steel cored wires are more sensitive to moisture pick up. Therefore the spools are vacuum packed. Storage facilities and redry procedures are the same as for unalloyed and low-alloyed cored wires. For stainless steel cored wires we kindly ask you to pay extra attention to removing the spools at the end of the working period and store them in a conditioned area. In case of need you can redry the wires at 150°C / max. 24 h.

Handling, storage and drying

Guideline

Handling, storage, drying fluxes for submerged arc welding

We recommend to store welding fluxes at a constant temperature in a conditioned area, this to avoid moisture pickup. The shelf life of welding fluxes can be max. three years if stored properly. Flux in damaged packaging should be used or repacked immediately. To ensure a crack-free usage fluoride-basic fluxes should be dried before usage. Redrying can be avoided in case of usage directly from undamaged, airtight packaging.

TYPICAL REDRYING GUIDELINES SUB-ARC WELDING FLUXES								
Production method	ethod Type Redrying Redry temperature Redrying time							
		recommended	°C					
Agglomerated flux	FB	Yes	350	2 - 10				
	AR	Yes	300	2 - 10				
Fused	MS	Yes	150	2 - 500				

Redry temperatures as mentioned in the table above are considered to be guidelines only. Redying in multiple sequences is possible within the mentioned redrying time. Fluxes that ar enot used immediately after redrying should be stored in a heated area or in an airtight packaging such a hermetically sealable drums. Storage temperature of the heated area should be around 150°C, max. storage period is 30 days. We recommend using a redrying oven where special care should be taken to overheating the flux.

Conversion of international standards

	the welding industry			
	, multiply by the factor in re	marks;		
To convert from met	ric, divide by the factor			
Quantity	Unit	Symbol	Other units/symbol	Remarks / factor
Length	Meter	m	Inch (in)	0.0254
•			Foot (ft)	0.3048
			Yard (yd)	0.9144
Area	Square meter	m ²	Inch ² (in ²)	0.0064516
			Foot ² (ft ²)	0.09290304
			Yard² (yd²)	0.8361274
Volume	Cubic meter	m ³	Inch ³ (in ³)	0.001638706
			Foot ³ (ft ³)	0.02831685
Frequency	Hertz	Hz	=	-
Mass	Kilogram	kg	Pounds (lbs)	0.4535924
Density	Kilogram per cubic meter	Kg/m ³	-	-
Force	Newton	N	kgf	0.980665
			lbf	0.4448222
Mechanical load	Pascal,	Pa	Newton per square meter	1
			Newton per square millimetre	
	Mega Pascal	MPa	(N/mm²)	1
		MPa	Ton f/in ²	0,064749
			1 ksi = 1.000 psi	6,89476
Impact strength	Joule	J	=	1J = 1NM
				1J = 0,7377562 fl lbf
				1J = 0,1011972 kgf m
Temperature	Kelvin	K	Degree Celsius (°C)	tK=tC + 273.15
			Degree Fahrenheit (F)	tK=(tF+ 459.67)/1.8
	Celsius	С	Degree Fahrenheit (F)	tF=(tCx1.8)+32
	Fahrenheit	F	Degree Celcius (°C)	tC=(tF-32)x1.8
Electric current	Ampere	Α	-	-
Electric potential	Voltage	V	-	-
Current density	Ampere per meter	A/m ²	-	-

	Conversion international sizes								
mm.	SWG	inch	mm.	SWG	inch.	mm.	SWG	inch.	
1,2	-	3/64	3,0	10	1/8	8,0	-	5/16	
1,5	16	1/16	4,0	8	5/32	10,0	-	3/8	
2,0	14	5/64	5,0	6	3/16	13,0	-	1/2	
2,5	12	3/32	6,0	4	1/4	25,4	-	1/1	

EURO Conversion rates EU countries							
Country	1 EUR =		Country	1 EUR =			
Austria	ATS	13.7603	France	FRF	6.55957		
Belgium	BEF	40.3399	Ireland	IEP	0.787564		
Germany	DEM	1.95583	Italy	ITL	1936.27		
Spain	ESP	166.386	Netherlands	NLG	2.20371		
Finland	FIM	5.94573	Portugal	PTE	200.482		

Material test certificates

Types of inspection documents

Material test certificates according to EN 10204

Increasingly, certificates attesting the characteristics and property values of welding filler metals are required by customers or inspection authorities within the framework of the acceptance testing of welded structures.

A few explanatory notes are included in this handbook with the request that they should be kept in mind when making enquiries or placing orders.

The EN standard 10204 is taken as a basis to determine the schedule of such certificates. The standard defines who is responsible for testing and authorized to sign, and whether the certificates must contain details concerning general typical values or specific test results relating to the particular delivery.

We would like to emphasize that EN 10204 does not contain the following details so that these must be specified by the customer upon ordering:

Scope of testing: e.g. type and number of tests, individual elements in case of chemical analysis tests

Consumables: e.g. type of shielding gas etc.

Test parameters: e.g. post weld heat treatment of the test piece, test temperatures

Requirements: e.g. minimum values for yield strength, tensile strength, elongation, impact values, chemical composition tolerances

Inspection society: if required.

All certificates issued in conformity with EN 10204 must be paid for and are charged separately.

HILCO Test Reports

Typical test reports issued by Hilarius Haarlem Holland BV

HTR	Acc. to EN 10204	Issued by	Contents
1	2.2	HILCO Administration	Typical chemical analysis
		dept.	Typical mechanical properties
			Non specific information
2	2.2	HILCO QA dept.	Typical chemical analysis
			Typical mechanical properties
			Specific information about shipment
3	2.3	HILCO QA dept.	Actual chemical analysis
			Typical mechanical properties
			Specific information about shipment
4	3.1.B	HILCO QA dept.	Actual chemical analysis
			Actual mechanical properties
			Specific information about shipment

Inilaa

Unalloyed steel

Weldability of base materials

Ships plate

All grades of shipbuilding steels are suitable for welding. Normal shipbuilding steels have a tensile strength of 400-480 Mpa. These steel can be divided into 5 categories according to their quality:

Category

A killed to semi-killed

B killed to semi-killed

C Al-killed, fine grained

D all deoxidising techniques, not killed

E Al-killed, fine grained

The required minimum impact strength values for the materials of categories C, D and E also apply for the filler metals. The values for ISO-V notch specimens are as follows:

Category

47 Joule minimum at +20°C

2 47 Joule minimum at 0°C

3 47 Joule minimum at -20°C 61 Joule minimum at -10°C

Those welding consumables classified as per categories 2 and 3 having a low hydrogen content are additionally marked with:

Category

H15 max. H₂O 0,5 g/100 g samples =

(H_{DM} < 15 ml / 100 gr deposit weld metal)

H10 max. H₂O 0,3 g/100 g samples =

(H_{DM} < 10 ml / 100 gr deposit weld metal)

H5 max.H₂O 0,2 g/100 g samples =

(H_{DM} < 5 ml / 100 gr deposit weld metal)

Structural steel

In general the weldability of unalloyed structural steel is easy.

As in all are welding processes the weld metal needs mechanical properties to match the base materials to be welded. The welder must avoid forming defects in the weld.

Unlimited weldability for the different welding processes cannot be guaranteed for structural steels. The behaviour of a steel plate during and after welding has a close relationship to the chemical structure of the material itself as well as its dimensions and shape. Furthermore the fabrication and service conditions of the component are important.

Boiler steel

There are no restrictions to the weldability of boiler steels. Please follow the recommendations mentioned in this handbook or mentioned in the classifications of the base materials to be welded.

Fine grain steel

All fine-grained steels can be welded, restrictions only exist for welding processes involving considerably heat accumulation. Please follow the recommendations mentioned in this handbook or mentioned in the classifications of the base materials to be welded.

Pipe steel

The weldablity of pipe steels is not subject to any restrictions. Please follow the recommendations mentioned in this handbook or mentioned in the classifications of the base materials to be welded.

Cast steel

The weldability of cast steels is only subject to restrictions as per EN 10213. Please follow the recommendations mentioned in this handbook or mentioned in the classifications of the base materials to be welded.

Unalloyed steelEuropean standard for base materials to be welded

The known DIN designations 1629, 1681, 17100, 17102, 17155 and 17172 have been replaced by EN standards. A summary of both old designations and their replacements is as follows:

	OLD DESIGNATION	OLD DESIGNATION (DIN)		(NEW)
Base materials	DIN	designation	EN	designation
		St. 37.0		P235T1
		St. 37.4		P235T2
Pipe steel	DIN 1629 / 1630	St. 44.0	EN 10216-1	P275T1
		St. 44.4	=	P275T2
		St. 52.0		P355N
		Gt. 62.0	<u> </u>	1 00011
		GS-45		GP240R
Cast steel	DIN 1681	GS-52	EN 10213-2	GP240H T1/T2
		00 02	<u> </u>	OI 24011 11/12
		St. 33		S185
		St. 37-2		S235JR
		USt. 37-2		S235JRG1
		RSt. 37-2		S235JRG2
		St. 37-3U		S235J0
		St. 37-3N		S235J2G3
		St. 44-2		S275JR
Structural steel	DIN 17100	St. 44-3U	EN 10025	S275J0
		St. 44-3N		S275J2G3
		St. 52-3U		S355J0
		St. 52-3N		S355J2G3
		St. 50-2		E295
		St. 60-2		E335
		St. 70-2		E360
		St. 70-2		L300
		StE 285		P275N
		WStE 285		P275NH
		TStE 285		P275NL1
		EStE 285		P275NL1
		StE 355		P355N
		WStE 355		P355NH
		TStE 355	EN 10028-3	P355NL1
		EStE 355		P355NL2
		StE 460		P460N
		WStE 460		P460NH
Fine grain steel	DIN 17 102	TStE 460		P460NL1
		EStE 460		P460NL2
		StE 285 / -		S275N / S275M
		TStE 285 / -		S275NL / S275ML
		StE 355 / BStE 355 TM	┪	S355N / S355M
		TStE 355 / BTStE355 TM		S355NL / S355ML
		StE 420 / BStE 420 TM	EN 10113-2/3	S420N / S420M
		TStE 420 / BTStE420 TM		S420N / S420ML
		StE 460 / BStE 460 TM		S460N / S460M
		TStE 460 / BTStE460 TM		S460 NL / S460 ML
		131E 400 / B131E400 TM		3400 NL / 3400 ML

Unalloyed steelEuropean standard for base materials to be welded

	OLD DESIGNA	TION (DIN)	EN STANDARD	(NEW)
Base materials	DIN	designation	EN	designation
		HI		P235GH
		HII		P265GH
		17 Mn 4		P295GH
Boiler steel	DIN 17 155	19 Mn 6	EN 10028-2	P355GH
		15 Mo 3		16 Mo 3
		13 CrMo 4 4		13 CrMo 4-5
		10 CrMo 9 10		10 CrMo 9-10

		TStE 460 V		S460QL
		StE 500 V / TStE 500 V		S500Q / S500QL
Fine grain steel		StE 550 V / TStE 550 V	EN 10137-2	S550Q / S550QL
(high strength steel)	_	StE 620 V / TStE 620 V	LIN 10137-2	S620Q / S620QL
		StE 690 V / TStE 690 V		S690Q / S690QL
		TStE 890 V / TStE 960 V		S890QL / S960QL

Fine grain steel	S235JRW-S355JRW	S235J2G3Cu-S355J2G3Cu
(weather resistant)		

	OLD DESIGNATION	ON (DIN)	EN STANDARD (I	NEW)	API 5L
Base materials	DIN	designation	EN	designation	design.
		StE290.7		L240MB	X42
		StE290.7TM		L290MB	
		StE240.7		L240NB	
		StE290.7		L290NB	
		StE320.7		L320NB	X46
		StE360.7TM		L360MB	X52
Pipe steel	DIN 17 172	StE360.7	EN 10208-2	L360NB	
		StE385.7		L385NB	X56
		StE415.7		L415NB	
		StE415.7TM		L415MB	X60
		StE445.7TM		L445MB	X65
		StE480.7TM		L480MB	X70
		StE550.7TM		L550MB	X80

	DESIGNATION	EN STANDARD (NEW)
	Grade A	S235JRS2
	Grade AH32	S315G1S
	Grade AH36	S355G1S
	Grade AH40	-
	Grade B	-
	Grade D	S235J2S1.0
Ships plate	Grade DH32	S315G2S
	Grade DH36	S355G2S
	Grade DH40	-
	Grade E	S235J4S
	Grade EH32	EN 17102: P315N
	Grade EH36	S355G3S
	Grade EH40	-

EN 499: E 42 0 RC 11

Coating type:

Rutile

Arc voltage: 42V

Approvals: ABS, BV, DB+Ü, DNV, GL, LR, TüV

Current:

Tip colour:

Welding positions:

Printing:

HILCO Red Extra / E42 0 RC / E 6013

Red Extra is our universal electrode for all welding positions, including vertical-down position. The electrode is characterised by easy handling, smooth arc transfer, easy slag removal and a finely rippled bead surface. Red Extra is the ideal choice for construction work where the use of one type of electrodes is permissible. Typical applications include assembly, workshop and repair welding of mild and low-alloyed structural steels. Red Extra is an all-current type (AC/DC), which also operates on transformers with low OCV, min. 42V.

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops
- Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 40	Fer SG 2	H60 / HW430	Fer G 1

Chemical composition wt % weld metal - typical

onemical composition, w. 76 word metal Typical.											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,12	0,60	0,40	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 500	≥ 22	0°C ≥ 50

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
2,0	300	10,5	40-60
2,5	350	18,2	60-100
3,2	350	28,9	90-140
4,0	350	44,6	150-190
5,0	350	70,4	180-240

AWS A5.1: E 6013 EN 499: E 42 0 RC 11

Coating type:

Rutile

Arc voltage: 42V

Approvals:

Current:

~ =-

Tip colour:

Red

Welding positions:

Printing:

HILCO Red / E 6013

Red is our rutile coated electrode for all welding positions, including vertical-down position. The electrode is characterised by easy handling, smooth arc transfer, easy slag removal and a finely rippled bead surface. Red is selected in a wide range of sheet metal applications. Typical applications include tack welding and welding on galvanised, primer painted and slightly rusted plates. Red is an all-current type (AC/DC) and is suitable for welding on transformers with low OCV, min. 42V.

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops
- Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 40	Fer SG 2	H60 / HW430	Fer G 1

Chemical composition, wt. % weld metal - typical:

Ciiciiiioc	shermed composition, we is word metal typical.										
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,09	0,50	0,35	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 500	≥ 22	0°C ≥ 47

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	18,2	60-90
3,2	350	28,9	90-140
4,0	350	44,6	150-190

EN 499: E 42 0 RC 11

Coating type:

Rutile

Arc voltage: 50V

Approvals: ABS. BV. DB+Ü. LR Current:

Tip colour: Brown Welding positions:

Printing:

Brown / E42 0 RC / E 6013

Brown is our "fast freezing" rutile coated electrode for all welding positions, especially vertical-down position. The electrode is characterised by easy handling, a good penetrating arc and the ability to bridge wide root openings under conditions of poor fit: on rusty, scaled, primer painted and/or contaminated plate material. Brown is selected for bridging gaps, assembly, repair and workshop welding. Typical applications include repair welding in shipbuilding. Brown is an all-current type (AC/DC).

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	AW GMAW FCAW		GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 40	Fer SG 2	H60 / HW430	Fer G 1

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	0,55	0,35	< 0,030	< 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 500	≥ 22	$0^{\circ}C \geq 47$

Dia.			Current		
mm.	mm.	1000 pcs.	Α		
2,5	350	18,8	60-100		
3,2	350	31,3	90-140		
4,0	350	47,0	150-190		

Pipeweld 6010

Stick electrodes - unalloyed steel

AWS A5.1: E 6010

EN 499: E 38 3 C 21

Coating type: Cellulose

Arc voltage: 70V

Approvals:

Current:

Tip colour:

Welding positions:

Printing:

E 6010 / Pipeweld 6010

Pipeweld 6010 is our cellulose coated electrode recommended for all welding positions, particularly in vertical down and overhead position. The electrode is characterised by a deeply penetrating, forceful, spray type arc and readily removable slag. The majority of applications are in joining carbon steel, but performance on galvanised and some low-alloy steels is proven to be excellent. Typical applications include shipbuilding, general constructions, bridges, storage tanks, piping and pressure vessel fittings.

* Root pass!

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

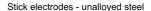
Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- · Repair Shops
 - Pipelines

Equivalent product in alternative welding process:

	Equivalent produ	ot iii aitoi iiativo wa	namy process.			
,	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
	-	K 60	Hilcord 52	-	H100 / HW430	Fer G 2

Chemical composition, wt.% weld metal – typical:


Oncinic	one mean composition, with well metal — typical.										
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,14	0,55	0.18	< 0.030	< 0.030						Ì	

Mechanical properties, weld metal - typical:

	Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J	
L	As welded	≥ 420	≥ 510	≥ 22	-20°C ≥ 70	

Dia. Length Mm. mm.		Weight (kgs) 1000 pcs.	Current A	
2,5	350	17,7	50-80	
3,2	350	25,5	80-130	
4,0	350	39,5	120-180	
5,0	350	61,4	160-220	

AWS A5.1: E 6013 EN 499: E 42 0 RC 11

Coating type:

Rutile

Arc voltage: 42V

Approvals: GL, LR

Current:

Tip colour: yellow

Welding positions:

Printing:

Performa / E42 0 RC / E 6013

Performa is our all-round all-current (AC/DC) electrode for all welding positions. The electrode is characterised by easy handling, smooth arc transfer, easy slag removal and a finely rippled bead surface. Performa is the logic first choice for shipbuilding. Typical applications include assembly, workshop and repair welding of mild and low-alloyed structural steels. Performa also operates on transformers with low OCV. min. 42V.

Base materials to be welded:

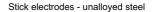
- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops
- Office furniture industry
- Do-it-yourself

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 40	Fer SG 1	H60 / HW430	Fer G 1


Chemical composition, wt. % weld metal - typical:

-												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,10	0,50	0,40	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 420	≥ 500	≥ 22	+20°C ≥ 55

Dia.	Length	Weight (kgs)	Current	
mm.	Mm.	1000 pcs.	Α	
2,5	350	16,5	80-110	
3,2	350	27,9	110-130	
4,0	350	42,5	140-160	

AWS A5.1: E 6013 EN 499: E 42 0 RR 12

Coating type:

Rutile

Arc voltage: 42V

Approvals: DB+Ü, TüV

Current:

Tip colour: Yellow Welding positions:

Printing:

Velora / E42 0 RR / E 6013

Velora is our "slow freezing" rutile coated electrode for all welding positions, except vertical down position. The electrode is characterised by easy handling, smooth arc transfer, easy slag removal and a finely rippled bead surface. Velora is selected for fast downhand welding of thin sheet metals (≥ 5,0 mm. wall-thickness). Typical applications include assembly, workshop and repair welding of mild and low-alloyed structural steels. Velora is an all-current type (AC/DC), which also operates on transformers with low OCV, min. 42V.

Base materials to be welded:

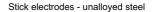
- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- · Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 40	Fer SG 1	H60 / HW155	Fer G 1


Chemical composition, wt. % weld metal - typical:

The state of the s											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,08	0,60	0,40	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 500	≥ 22	0°C ≥ 47

Dia. mm.	Length Weight (kgs) mm. 1000 pcs.		Current A
2,0	300	10,9	50-70
2,5	350	20,5	60-100
3,2	350	34,4	100-140
4,0	450	70,0	150-190
5,0	450	112,0	190-270

EN 499: E 42 0 RR 32

Coating type:

Rutile

Arc voltage: 42V

Approvals: CL, LR Current:

Tip colour: Blue Welding positions:

Printing:

Velveta / E42 0 RR / E 6013

Velveta is our rutile coated electrode for all welding positions, especially for vertical up position. The electrode is characterised by an extremely easy handling, smooth arc transfer, easy slag removal and a finely rippled bead surface. Velveta is the logic first choice for thin-walled pipe welding. Typical applications include assembly, workshop and repair welding of mild and low-alloyed structural steels. Velveta is an all-current type (AC/DC), which also operates on transformers with low OCV, min. 42V.

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- · Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops
- Office furniture industry
- Pipelines
- Gas industry

Equivalent product in alternative welding process:

Equivalent produ	ot iii aitornativo wo	iaing process.			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 40	Fer SG 2	H60 / HW430	Fer G 1

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,10	0,60	0,40	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 510	≥ 22	$0^{\circ}C \geq 47$

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,0	300	10,0	50-70
2,5	350	19,2	60-100
3,2	350	31,3	80-140
4,0	350	46,0	130-180
4,0	450	59,0	130-180
5,0	450	90,0	180-240

EN 499: E 42 2 RB 12 H10

Coating type: Basic-rutile

Arc voltage: 55V

Approvals: DB+Ü, DNV, LR, TüV, Force

Current:

Tip colour:

*root pass

Printing:

Basic 55 / E 7016

Welding positions:

Basic 55 is our double coated electrode for all welding positions, except vertical down position. The electrode is characterised by easy handling, a well controllable arc, excellent root penetration, easy slag removal and excellent metallurgical properties up to -30°C. Typical applications include shipbuilding, general constructions, bridges, storage tanks as well as root pass and positional welding. Basic Special is an all-current type (AC/DC).

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- · Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 51	Fer SG 2	H100 / HW530	Fer G 2

Chemical composition, wt. % weld metal - typical:

1	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,06	0,90	0,70	< 0.025	< 0.025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J	
As welded	≥ 420	≥ 510	≥ 22	-20°C ≥ 90	

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
2,5	350	19,5	60-90
3,2	350	32,8	95-150
3,2	450	43,2	95-150
4,0	450	65,0	140-190

AWS A5.1: E 7018 EN 499: E 42 4 B 32 H5

Coating type:

Basic

Arc voltage: 65V

Approvals: ABS, GL, LR Current:

~

Tip colour:

Welding positions:

Printing: BASIC / E 7018

Basic is our basic coated low hydrogen (H_{DM} < 5 ml. / 100 gr. deposit weld metal) electrode for all welding positions, except vertical down position. The electrode is characterised by a smooth, quiet arc, very low spatter and good arc penetration. Basic can be used at high travel speeds due to its elevated recovery (120%). Typical applications include shipbuilding, general constructions, bridges, storage tanks as well as producing crack-resistant and tough welded joints on mild and low-alloy steels. Basic is welded on AC current.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- · Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 51	Fer SG 2	H100 / HW530	Fer G 2

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
80,0	1,00	0,50	< 0.025	< 0.025							

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 510	≥ 22	-40°C ≥ 47

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	20,5	65-90
3,2	350	37,3	100-140
4,0	450	64,4	140-190
5,0	450	98,3	180-250

Basic Super

Stick electrodes - unalloyed steel

AWS A5.1: E 7018-1 H8 R

EN 499: E 46 4 B 32 H5

Coating type:

Basic

Arc voltage: 65V

Approvals: DB+Ü, DNV, LR, TüV, Force

Current:

~ =- =+

Tip colour:

Welding positions:

Printing:

BASIC SUPER / E7018-1

Basic Super is our universal low hydrogen ($H_{DM} < 5$ ml. / 100 gr. deposit weld metal) electrode for all welding positions, except vertical down position. The electrode is characterised by a smooth, quiet arc, very low spatter, easy slag removal and excellent mechanical properties even at low temperatures (down to -40°C). Typical applications include shipbuilding, general constructions and offshore constructions. Basic Super is the ideal choice for out-of-position welding. Basic Super is preferably welded on AC current.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4. St45.8. X42-X60. StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	SMAW GMAW		GTAW	SAW Gas weldin Brazing	
-	K 60	Hilcord 51	Fer SG 2	H100 / HW530	Fer G 2

Chemical composition, wt. % weld metal - typical:

The mountain of the state of th											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,05	1,00	0,50	≤ 0,020	≤ 0,020							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 460	≥ 550	≥ 25	-40°C ≥ 60

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A	
2,5	350	24,6	70-110	
3,2	350	38,2	110-150	
3,2	450	49,5	110-150	
4,0	450	71,4	140-200	
5,0	450	105,8	200-270	

Basic Directa

Stick electrodes - unalloved steel

AWS A5.1: E 7018-1 H4 R

EN 499: E 42 5 B 42 H5

Coating type:

Basic

Arc voltage: 65V

Approvals: DNV, LR, TüV, GL

Current:

=+

Tip colour:

Welding positions:

Printing:

Basic Directa / E 42 5 B / E 7018-1

Basic Directa is our high quality low hydrogen (H_{DM} < 5 ml. / 100 gr. deposit weld metal) electrode for all welding positions, except vertical down position. The electrode is characterised by a smooth, quiet arc, very low spatter, an easy slag removal and good mechanical properties up to -50°C. Typical applications include shipbuilding, general constructions and offshore constructions. Basic Directa is welded on DC (+) current, has 120% recovery and is suitable to weld fine-grain steel grades.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

Equivalent produ	Equivalent product in alternative welding process.											
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing							
-	SG 3	Hilcord 51	Fer SG 3	H100 / HW530	Fer G 2							

Chemical composition, wt. % weld metal - typical:


С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,10	1,20	0,35	< 0,020	< 0,020							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 420	≥ 500	≥ 20	-50°C ≥ 47
Stress relieved	≥ 400	≥ 500	≥ 22	-50°C ≥ 47

Note: stress relieved condition 620°C / 1 h.

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
2,5	350	21,0	65-110
3,2	350	39,1	100-145
3,2	450	50,0	100-145
4,0	450	72,5	135-200
5,0	450	103,6	180-280

EN 499: E 42 0 RR 53

Coating type:

Rutile

Arc voltage: 65V

Approvals:

Current:

Tip colour:

Welding positions:

Printing:

Regina 140 / E42 0 RR / E 7024

Regina 140 is our rutile coated high efficiency (recovery 140%) electrode for making fillet welds in the flat and horizontal position. The electrode is characterised by a smooth, quiet arc, very low spatter, and easily removable slag. Regina 140 can be used with high travel speeds, resulting in high deposition rates (> 3,2 kgs./hour). Typical applications include shipbuilding, general constructions, bridges and welding primer painted or contaminated plates. Regina 140 is all-current type (AC/DC).

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	SMAW GMAW		GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 40	-	H60 / HW430	1

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,10	0,80	0,25	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 500	≥ 20	0°C ≥ 47

Dia. Mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
4,0	450	93,8	180-220
5,0	450	145,0	240-320

AWS A5.1: E 7024-1

EN 499: E 42 2 RA 53

Coating type: Rutile-acid

Arc voltage: 65V

Approvals: ABS, BV, CL, DB+Ü, DNV, GL, LR, TüV

Current:

Tip colour:

Welding positions:

Printing:

Regina 150 / E42 2 RA / E 7024-1

Regina 150 is our rutile-acid coated high efficiency (recovery 160%) electrode for making x-ray quality fillet welds in the flat and horizontal position. The electrode has a smooth quiet arc, very low spatter and easily removable slag (self-releasing even in narrow angles). Regina 150 can be used with high travel speeds, resulting in high deposition rates (> 3,6 kgs./hour). Typical applications include joining heavier sections of mild and low-alloyed structural steels found in shipbuilding and general constructions as well as usage on primer painted or contaminated plates.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4. St45.8. X42-X60. StE210.7-StE360.7TM
- · Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 52	-	H100 / HW530	

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	0,90	0,40	≤ 0,025	≤ 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 440	≥ 510	≥ 25	-20°C ≥ 50
Stress relieved	≥ 420	≥ 500	≥ 27	+20°C ≥ 75

Note: stress relieved condition 620°C / 1 h.

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A	
3,2	450	62,5	120-180	
4,0	450	96,7	170-240	
5,0	450	147,5	230-340	
6,0	450	212,0	290-400	

EN 499: E 42 0 RR 53

Coating type:

Rutile

Arc voltage: 65V

Approvals: BV, LR, Force Current:

~ =-

Tip colour:

Welding positions:

Printing:

Regina 160 / E42 0 RR / E 7024

Regina 160 is our easy-to-handle high efficiency (recovery 160%) electrode for making fillet welds in the flat and horizontal position. The electrode has a smooth quiet arc, very low spatter and easily removable slag. Regina 160 can be used with high travel speeds, resulting in high deposition rates (> 3,5 kgs./hour). Typical applications include joining mild and low-alloyed structural steels as well as usage on primer painted or contaminated plates. Regina 160 is an all-current type (AC/DC).

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry

Equivalent product in alternative welding process:

SMAW	SMAW GMAW		GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 52	-	H60 / HW430	1

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,10	0,60	0,40	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 430	≥ 510	≥ 24	$0^{\circ}C \ge 47 + 20^{\circ}C \ge 70$
Stress relieved	≥ 410	≥ 470	≥ 26	

Note: stress relieved condition 620°C / 1 h.

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A	
3,2	450	65,6	120-160	
4,0	450	103,6	160-230	
5,0	450	154,3	250-340	
6,0	450	220,0	300-400	

EN 499: E 42 2 RB 53

Coating type: Zircon-Basic

Arc Voltage: 65V

Approvals: DNV, LR, TüV

Welding Current:

Tip colour:

None

Welding positions:

Printing:

Basic 160 / 42 2 B / E7028

Basic 160 is our zircon-basic high efficiency (recovery ≥ 160%) electrode for fast fillet welding, especially to be used for joining heavier sections of mild and low-alloyed structural steels found in construction and shipbuilding applications i.e. demanding applications. The non-basic elements in the electrode coating ensure excellent weldability, smooth bead appearance and an easy slag release. Basic 160 is an all-current type (AC/DC).

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 51	-	H100 / HW530	-

Chemical composition, wt. % weld metal – typical:

С	Mn	Si	S	Р.	Cr	Ni	Мо	Cu	Nb	V	Al
0,10	0,85		≤ 0,030	≤ 0,030							

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J -20°C ≥ 47 -20°C > 47	
As welded Stress relieved	≥ 430 > 400	≥ 510 > 470	≥ 25 > 27		
Oli C33 TCIIC VCu	≥ 400	≥ 470	≥ 21	-20 C ≥ 41	

Note: stress relieved condition 620°C / 1 h.

Dia.	Length	Weight (kgs)	Current	
mm.	mm.	1000 pcs.	A	
4,0	450	98,2	180-230	

Welding positions:

AWS A5.1: E 7024

EN 499: E 42 0 RR 73

Coating type:

Rutile

Arc voltage: 65V

Approvals:

BV. LR

Current:

Tip colour: Printing:

Regina 180 / E 42 0 RR / E 7024

Shipvards/offshore

Construction works

Bridge & road constructions

Pressure vessel & boiler industry

Applications:

Regina 180 is our high speed, high productivity (recovery 180%) electrode for making fillet welds in the flat and horizontal position. The electrode has a smooth quiet arc, very low spatter and easily removable slag. Regina 180 can be used with high travel speeds, resulting in high deposition rates (> 3,8 kgs./hour). Typical applications include joining mild and low-alloyed structural steels as well as usage on primed or contaminated plates. Regina 180 is an all-current type (AC/DC), size 5,0x600 mm. can be used for gravity welding.

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 52	-	H100 / HW530	

Chemical composition, wt. % weld metal – typical:

Ì	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,10	0,65	0,50	< 0,030	< 0,030							

Mechanical Properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J	
As welded	≥ 440	≥ 510	≥ 24	$0^{\circ}C \geq 47$	

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	A
4,0	450	105,5	180-220

EN 499: E 38 3 C 21

Coating type:

Cellulose

Approvals:

Arc voltage: 700

Arc voltage: 70V

Current:

=+ =-*
*root pass

Tip colour:

Welding positions:

Printing:

E 6010 / Pipeweld 6010

Pipeweld 6010 is our cellulose coated electrode for cross-country welding API 5L pipe steels in vertical down position. Specially recommended for welding root passes. The electrodes are packed in metal cans to ensure moisture levels for proper operation.

Base materials to be welded:

- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Root passes in pipe steel up to L485MB, X70, StE480.7TM

Applications:

Pipelines

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K60	Hilcord 52	-	H100 / HW430	Fer G 2

Chemical composition, wt.% weld metal - typical:

1	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
	0,14	0,55	0,18	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 510	≥ 22	-20°C ≥ 70

Dia. Mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A	
2,5	350	17,7	50-80	
3,2	350	25,5	80-130	
4,0	350	39,5	120-180	
5,0	350	61,4	160-220	

Pipeweld 8010

AWS A5.5: E 8010-P1

EN 499: E 46 3 C 25

Coating type: Cellulose

Arc voltage: 70V

Approvals:

Current:

*root pass

Welding positions:

Tip colour:

Printing:

E 8010-P1 / Pipeweld 8010

Pipeweld 8010 is our cellulose coated electrode for cross-country welding high-strength butt joints in API 5L pipe steels. The electrode is characterised by a deeply penetrating, forceful, spray type arc and readily removable slag. Typical application for Pipeweld 8010 is the welding of API 5L: X65 pipe steel. For root pass welding we recommend to use Pipeweld 6010. Electrodes are packed in metal cans to ensure moisture levels for proper operation.

Base materials to be welded:

- Pipe steel P235T1-P355N, L210-L485MB, S275ML-S460ML, X42-X70, TStE290-TstE445.7TM
- Root passes in pipe steel up to L550MB(NB), X80, StE550.7TM

Applications:

Pipelines

Equivalent product in alternative welding process:

=quiraioni produ	•• ··· a	iamig process.			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
_	K60	Hilcord 52	-	H100 / HW430	Fer G-2

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,16	0,85	0,20	≤ 0,030	≤ 0,030		0,20					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J	
As welded	≥ 460	≥ 550	≥ 20	-30°C ≥ 47	

. achaging a	ia iioiaiiig aai	•••			
Dia. Mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A		
3,2	350	26,8	80-130		
4,0	350	40,5	120-180		
5.0	350	62.0	160-220		

AWS A5.18: ER70S-3

EN 440: G 42 2 M G2 Si 1

Wire type: MAG Solid wire Current:

Welding positions:

Approvals:

Shielding gas:

 $M12-M32 = ArCO_2-ArCO_2O_2$

SG 1 is our copper coated solid wire for MAG welding unalloyed and low alloyed, incl. fine grain types, structural steels. Typical applications include: general constructions, shipbuilding, bridges, tanks etc.

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- · Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops
 - Car industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red Extra	-	Hilcord 40	Fer SG1	H100 / HW430	Fer G-1

Chemical composition, wt.% weld metal - typical:

The interior of the interior o											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,09	1,20	0,60	≤ 0,030	≤ 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values	
	MPa	MPa	Lo=5d - %	ISO-V J	
As welded	≥ 420	≥ 520	≥ 26	-20°C ≥ 80	

Note: properties under M21 = ArCO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
0,8	S300	15	80-180	17-20
1,0	S300	15	120-240	17-22
1,2	S300	15	160-260	18-26

SG 1A Superflow

MAG wires - unalloyed steel

AWS A5.18: ER70S-2 EN 440: G 42 2 M G 2 Ti

Wire type:

MAG solid wire

Current:

Welding positions:

Approvals:

Shielding gas:

 $M12-M32 = ArCO_2-ArCO_2O_2$

SG 1 A Superflow is our bronze coated solid wire for MAG welding unalloyed and low alloyed galvanized structural steels. We have added Ti, Zr and Al to the wire which makes SG 1 A Superflow ideal for welding oxidised (rusted) material and also coated plate (primed or painted).

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- · Construction works
- · Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops
 - Car industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red Extra	-	Hilcord 40	Fer SG 1A	H100 / HW530	-

Chemical composition, wt.% weld metal - typical:

 The most composition, 11170 most most syptem.											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ti	Zr	Al
0,06	1,10	0,50	≤ 0,030	≤ 0,025					0,15	0,12	0,15

Note: single values for Ti, Zr, Al are maximum values

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 420	≥ 520	≥ 27	-20°C ≥ 80

Note: properties under M21 = ArCO₂ gas shielding

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
0,8	BS300	15	80-180	17-20
1,0	BS300	15	120-240	17-22
1,2	BS300	15	160-260	18-26

AWS A5 18: FR70S-6

EN 440: G 42 2 C G3 Si 1 / G 42 4 M G3 Si 1

Wire type: MAG Solid wire

Approvals: LR Welding Current:

Welding positions:

=+

Shielding gas:

 $C1 = CO_2$, $M11-M32 = ArCO_2-ArCO_2O_2$ including $M21 (1) = ArHeCO_2$

SG 2 is our copper coated solid wire for MAG welding unalloyed and low alloyed, incl. fine grain types, structural steels. Typical applications include: general constructions, shipbuilding, bridges, tanks etc.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355. StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops
- Car industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red Extra	-	Hilcord 40	Fer SG 2	H100 / HW530	Fer G 1

Chemical composition, wt.% weld metal - typical:

1	C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,10	1,50	0,85	≤ 0,030	≤ 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 430	≥ 510	≥ 22	-20°C ≥ 70

Note: properties under M21 = ArCO₂ gas shielding

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
0,6	S200	5	60-140	16-20
0,8	S200	5	80-180	17-20
0,6	S300	15	60-140	16-20
0,8	S300	15	80-180	17-20
0,9	S300	15	100-200	17-22
1,0	S300	15	120-240	17-22
1,2	S300	15	160-260	18-26

AWS A5.18: ER 70S-6

EN 440: G 42 2 C G3 Si 1 / G 46 2 M G3 Si 1

Wire type: MAG Solid wire Current:

Welding positions:

Approvals:

ABS, CL, DB+Ü, GL, LR, TüV

Shielding gas:

 $C1 = CO_2$, $M11-M32 = ArCO_2-ArCO_2O_2$ including M21 (1) = $ArHeCO_2$

K60 is our solid wire for MAG welding unalloyed and low alloyed, incl. fine grain types, structural steels. The wire is used in a wide range of applications: general constructions, shipbuilding, bridges, tanks etc. The stability of the wire makes K60 suitable for controlled automatic and robotic welding processes including T.I.M.E., high efficiency MAG welding etc.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- Construction works
- · Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops
- Car industry

Equivalent product in alternative welding process:

SI	MAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red	l Extra	-	Hilcord 40	Fer SG 2	H100 / HW530	Fer G 1

Chemical composition, wt.% weld metal - typical:

C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,08	1,40	0,85	≤ 0,030	≤ 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 430	≥ 510	≥ 22	-20°C ≥ 70

Note: properties under M21 = ArCO₂ gas shielding

Packaging and welding data:

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
0,8	B300	16	80-180	17-20
1,0	B300	16	120-240	17-22
1,2	B300	16	160-260	18-26
0,8	MP	250	80-180	17-20
1,0	MP	250	120-240	17-22
1,2	MP	250	160-260	18-26

Note: high efficiency MAG welding data on request

AWS A5.18: ER70S-6

EN 440: G 46 2 C G4 Si 1 / G 46 4 M G4 Si 1

Wire type: MAG Solid wire Current:

Welding positions:

Approvals:

Shielding gas:

 $C1 = CO_2$, $M11-M32 = ArCO_2-ArCO_2O_2$ including M21 (1) = $ArHeCO_2$

SG 3 is our copper coated solid wire for MAG welding structural steels with a maximum tensile strength of 620 Mpa. Typical applications include: general constructions, shipbuilding, bridges, tanks etc.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355. StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

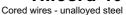
Applications:

- Shipyards/offshore
- · Construction works
- · Bridge & road constructions
- · Pressure vessel & boiler industry
- · Repair Shops
- Car industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basic Directa	-	Hilcord 51	Fer SG 3	H100 / HW 530	-

Chemical composition, wt.% weld metal – typical:


С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,10	1,75	1,00	≤ 0,030	≤ 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 480	≥ 600	≥ 24	-40°C ≥ 50

Note: properties under M21 = ArCO₂ gas shielding

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
0,8	B300	16	80-180	17-20
1,0	B300	16	120-240	17-22
1.2	B300	16	160-260	18-26

AWS A5.20: E 71 T-1M/E 71 T-12MH8

EN 758: T 46 3 P MC 1 H5

Wire type:

Rutile cored wire

Current:

Welding positions:

Approvals: GL. LR Shielding gas:

 $M21 = ArCO_2 / C = CO_2$

Hilcord 40 is our rutile flux cored wire for MAG welding unalloyed and low alloyed structural steels in all positions. Wire offers excellent weldability, good mechanical properties, practically no spatter and allows you to weld in spray arc mode. Hilcord 40 can be used in single and multipass applications, typical are: shipbuilding, machinery, bridge construction, rolling stock, structural fabrication, size 1,0 mm. is specifically suitable to weld thin sheet metals.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Velora	K 60	-	Fer SG 1	H100 / HW 430	Fer G 1

Chemical composition, wt.% weld metal - typical:

1	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,05	1,30	0,60	< 0.030	< 0.025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 460	≥ 530	≥ 24	-30°C ≥ 70

Note: properties under M21 = ArCO₂ gas shielding

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
1,0	BS200	4,5	130-250	22-30
1,2	BS200	4,5	150-300	22-32
1,0	BS300	16	130-250	22-30
1,2	BS300	16	150-300	22-32
1,6	BS300	16	160-375	32-33

AWS A5.20: E 71 T-1 EN 758: T 42 2 P C 1 H10

Wire type: Rutile cored wire Current:

Welding positions:

Approvals:

Shielding gas: C1 = CO₂

Hilcord 40C is our rutile flux cored wire for MAG welding unalloyed and low alloyed structural steels under CO_2 gas shielding. Wire offers excellent weldability, good mechanical properties, practically no spatter and allows you to weld in spray arc mode. Hilcord 40C can be used in single and multipass applications, typical are: shipbuilding, machinery, bridge construction, rolling stock, structural fabrication.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

1	SMAW	Gas welding /				
	SWAVV	GMAW	FCAW	GTAW	SAW	brazing
	Velora	K 60	-	Fer SG 1	H100 / HW 430	Fer G 1

Chemical composition, wt.% weld metal - typical:

C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al	
0,06	1,40	0,50	< 0.030	< 0.025								

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 420	≥ 520	≥ 22	-20°C ≥ 47

Note: properties under C1 = CO2 gas shielding

r aonaging an	r dokaging and wording data.										
Dia.	Dia. Length				Current	Voltage					
mm.	mm.	package kg.	Α	V							
1,2	S200	5	160-260	18-26							
1,2	B300	16	160-260	18-26							
1.6	B300	16	180-300	20-30							

Cored wires - unalloyed steel

AWS A5.20: E 71 T-1 M H4

EN 758: T 46 2 P M 1 H5

T 46 2 P C 1 H5

Wire type: Rutile cored wire Current:

Welding positions:

Approvals:

ABS, DNV, LR, TüV

Shielding gas:

 $M21 = ArCO_2 / C1 = CO_2$

Hilcord 41 is our seamless copper coated rutile flux cored wire for MAG welding unalloyed and low alloyed structural steels in all positions. Wire can be used in a wide range of applications and offers excellent weldability, good mechanical properties, practically no spatter and allows you to weld in spray arc mode. Hilcord 41 is a guaranteed low hydrogen content wire ($H_{DM} < 5 \text{ ml/100 gr.}$ deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

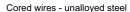
- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops
- Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red Extra	K 60	-	Fer SG 1	H 60 / HW 430	Fer G 1

Chemical composition, wt.% weld metal - typical:

C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,06	1,40	0,50	< 0,030	< 0.025							


Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	> 460	> 530	> 23	-20°C > 70

Note: properties under M21 = ArCO₂ gas shielding

Dia.	Spooltype	Weight /	Current	Voltage	
mm.	5,553	spool kg.	A	V	
1,2	B200	5	150-300	22-32	
1,0	B300	16	130-270	21-30	
1,2	B300	16	150-300	22-32	
1,6	B300	16	180-375	24-33	

AWS A5.20: E 71 T-1 H4

EN 758: T 42 2 P C 1 H5

Wire type:

Rutile cored wire

Current:

=+

Welding positions:

Approvals:

Shielding gas: C1 = CO₂

Hilcord 41C is our seamless copper coated rutile flux cored wire for MAG welding unalloyed and low alloyed structural steels under CO₂ gas shielding. Wire can be used in a wide range of applications and offers excellent weldability, good mechanical properties, practically no spatter and allows you to weld in spray arc mode. Hilcord 41C is a guaranteed low hydrogen content wire ($H_{DM} < 5$ ml/100 gr. deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops
- Office furniture industry

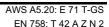
Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red Extra	K 60	-	Fer SG 1	H 60 / HW 430	Fer G 1

Chemical composition, wt.% weld metal - typical:

one mean composition, the formation of the mean of the											
C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,06	1,30	0,45	≤ 0,030	≤ 0,025							

Mechanical properties, weld metal - typical:


Condition	Yield strength	Tensile strength	Elongation	Impact Values
	Rp 0,2 Mpa	RM Mpa	A5 - %	ISO-V J
As welded	≥ 420	≥ 520	≥ 22	-20°C ≥ 70

Note: properties under C1 = CO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
1,2	S200	5	150-350	23-33
1,2	B300	16	150-350	23-33
1,6	B300	16	180-400	24-33

Hilcord 2040

Wire type:
Open arc

Current:

Welding positions:

Approvals:

Hilcord 2040 is our cored wire for self shielded single pass arc welding of unalloyed and low alloyed structural steels. The wire is excellent for joining thin sheet metals, size 0,8 mm. allows you to weld sheets as thin as 1,2 mm. Hilcord 2040 in size 0,8 and 0,9 mm. is ideal for usage on light industrial MAG welding machines with a max. output range up to 160-170A.

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52,
 St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- · Repair Shops
- Office furniture industry
- Do-it-yourself

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Velveta	K 60	-	Fer SG 1	-	Fer G 1

Chemical composition, wt.% weld metal - typical:

The mount of the production of												
ĺ	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,25	0,70	0,40	< 0.030	< 0.025							2,00

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values	
	MPa	MPa	Lo=5d - %	ISO-V J	
As welded	As welded ≥ 420		≥ 22	+20°C ≥ 25	

Dia.	Length	Weight /	Current	Voltage		
mm.	mm.	package kg.	Α	V		
0,8	S200	4,5	40-160	14-22		
0,9	S200	4,5	80-200	14-22		
1,2	S200	4,5	95-250	15-26		
0,9	BS300	15	80-200	14-24		
1,2	BS300	15	95-250	15-26		

Hilcord 2048

Cored wires - unalloyed steel

AWS A5.20: E 71 T-8 EN 758: T 42 2 Z N 1

Wire type:
Open arc

Current:

Welding positions:

Approvals:

Hilcord 2048 is our cored wire for self shielded single pass arc welding unalloyed and low alloyed structural steels in all welding positions. Hilcord 2048 has a fast-freezing slag permitting high deposition rates and excellent welding characteristics. Typical applications include: joining sheet-pile walls, plate and tubular welding, bridge and building fabrication including seismic applications, hull and stiffener welding for ship constructions.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Brown	K 60	-	Fer SG 1	H 100 / HW 430	

Chemical composition, wt.% weld metal - typical:

The mount of the production of											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,20	0,50	0,40	≤ 0,030	≤ 0,025							0,50

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J	
As welded	≥ 460	≥ 530	≥ 20	-20°C ≥ 70	

j	Dia.	Length	Weight /	Current	Voltage	
	mm.	mm.	spool kg.	Α	V	
	1,6	S200	4,5	140-240	18-25	
ı	1,6	BS300	15	140-240	18-25	

AWS A5.20: E 70 T-5 H4 / E 70 T-5 M H4 EN 758: T 42 4 B C 3 H5 / T 42 4 B M 3 H5

Wire type: Basic cored wire Current:

Welding positions:

Approvals:

ABS, DNV, LR, TüV

Shielding gas:

 $C1 = CO_2$, $M21 = ArCO_2$, $M33 = ArCO_2O_2$

Hilcord 51 is our seamless copper coated basic flux cored wire for MAG welding unalloyed and low alloyed structural steels. Wire has characteristics typical for basic type consumables: weld deposits have superior impact toughness and crack resistance comparable to stick electrodes type E7018. Hilcord 51 is a guaranteed low hydrogen content wire (H_{DM} < 5 ml/100 gr. deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3. C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

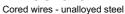
Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basic Directa	K 60	-	Fer SG 2	H 100 / HW 530	-

Chemical composition, wt.% weld metal - typical:


-												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,06	1,50	0,45	≤ 0,030	≤ 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 520	≥ 24	-40°C ≥ 50

Note: properties under M21 = ArCO₂ gas shielding

	Dia.	Spooltype	Weight /	Current	Voltage
	mm.		spool kg.	Α	V
1	1,2	B300	16	120-350	18-32
1	1,6	B300	16	200-450	20-34

AWS A5.20: E 71 T-5 / E 71 T-5 MJ

EN 758: T 42 4 B C 1 H5 / T 42 5 B M 1 H5

Wire type: Basic cored wire Current: *all positions Welding positions:

Approvals:

Shielding gas: $C1 = CO_2$, $M21 = ArCO_2$

Hilcord 51.71 is our basic flux cored wire for MAG welding unalloyed and low alloyed structural steels. Wire has characteristics typical for basic type consumables: weld deposits have superior impact toughness and crack resistance comparable to stick electrodes type E7018-1. Under mixed gas shielding (M21 = ArCO₂) the wire can be welded in all-positions. Hilcord 51.71 can be use in single and multipass applications and is recommended for medium to heavy constructions.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355. StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

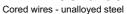
Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

Equivalent product in alter	Equivalent product in diternative welding process.								
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing				
Basic Directa	K 60	-	Fer SG 2	H 100 / HW 530					

Chemical composition, wt.% weld metal - typical:


С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,06	1,40	0,50	< 0,030	< 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J	
As welded	≥ 420	≥ 520	≥ 24	-50°C ≥ 50	
Stress relieved	≥ 400	≥ 500	≥ 26	-50°C ≥ 60	

Note: properties under M21 = ArCO₂ gas shielding SR 580°C 15h

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
1,2	BS300	15	100-350	18-32
1,6	BS300	15	160-450	20-34

AWS A5.18: E 70 C-6M H4

EN 758: T 42 3 M M 2 H5

Wire type: Metal cored wire Current:

Welding positions:

Approvals:

LR, GL, DNV, CL, TüV, DB+Ü

Shielding gas:

M21 = ArCO₂ including M21 (1) = ArHeCO₂

Hilcord 50 is our metal cored wire for MAG welding of unalloyed and low alloyed structural steels. Wire offers excellent weldability and deposition rates of > 6,0 kilo per hour can be reached (dia 1,2 mm.). Hilcord 50 is used in a wide range of applications: shipbuilding, machinery, general constructions, bridge constructions etc.

Applications:

Shipyards/offshore

Construction works

Bridge & road constructions

Pressure vessel & boiler industry

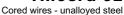
Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355. StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Equivalent product in alternative welding process:

Equivalent product in ait	Equivalent product in alternative weiging process.								
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing				
Regina 150	K 60	-	-	H60 / HW430	-				

Chemical composition, wt.% weld metal – typical:


Γ	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,06	1,35	0,60	≤ 0,030	≤ 0,020							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 420	≥ 500	≥ 24	-30°C ≥ 50

Note: properties under M21 = ArCO₂ gas shielding

r aonaging air	a woranig aata.			
Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
1,2	S200	4,5	90-340	15-34
1,2	B300	15	90-340	15-34
1,6	B300	15	145-400	15-36
1,2	Drums	200	90-340	15-34

AWS A5.18: E 70 C-6M H4 EN 758: T 46 2 M M 1 H 5

Wire type: Metal cored wire Current:

Welding positions:

Approvals: BV, CL, DB+Ü, DNV,

Approvals: BV, CL, DB+U, DI LR. TüV. GL Shielding gas:

 $M21 = ArCO_2$ including M21 (1) = $ArHeCO_2$

Hilcord 52 is our seamless copper coated metal cored wire for MAG welding unalloyed and low alloyed structural steels in all welding positions. Wire is spatter free, offers good side wall wetting, concave weld shape, radiographical soundness and porosity free weld metal. Hilcord 52 is a guaranteed low hydrogen content wire (H_{DM} < 5 ml/100 gr. deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- · Construction works
- Bridge & road constructions
 - Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

S	MAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Reg	jina 150	K 60	-	-	H60 / HW 430	-

Chemical composition, wt.% weld metal - typical:

C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,06	1,40	0,65	< 0.030	< 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 460	≥ 530	≥ 24	-20°C ≥ 50
Stress relieved	≥ 420	≥ 510	≥ 26	-20°C ≥ 70

Note: properties under M21 = ArCO₂ gas shielding

SR 620°C 1h

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
1,2	S200	5	120-350	17-32
1,0	B300	16	90-280	16-30
1,2	B300	16	120-350	17-32
1,6	B300	16	200-450	20-34

AWS A5.18: E 70 C-6M H4 EN 758: T 46 4 M M 1 H 5

Wire type: Metal cored wire Current:

Welding positions:

Approvals: LR. TüV. DNV Shielding gas:

M21 = ArCO₂ including M21 (1) = ArHeCO₂

Hilcord 54 is our metal cored wire for all-position welding of unalloyed and low alloyed structural steels under mixed gas shielding. The wire has outstanding welding properties in short-arc and spray-arc range. Excellent mechanical properties in both as welded and PWHT condition. Hilcord 54 is slagless, offers a high efficiency, is almost spatterfree. Wire offers excellent mechanical properties (CNV ¹ 60J at - 40°C). Typical applications include semi-automatic and mechanised welding of thin sheet metals (> 3 mm.).

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
 - Pressure vessel & boiler industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	OAW
Regina 150	SG 3		Fer SG 2	H 100 / HW 530	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	P	Cr	Ni	Мо	Cu	Nb	٧	Al
0,08	1,40	0,60	< 0,020	< 0,020							

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 460	≥ 560	≥ 22	+20°C ≥ 130 -40°C ≥ 70
PWHT 580°C/2h.	≥ 420	≥ 520	≥ 22	+20°C ≥ 130 -40°C ≥ 70

Notes: properties under M21 = ArCO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
1,2	B200	5	90-330	16-33
1,2	B300	16	90-330	16-33
1,2	Drums	200	90-340	16-36
1,6	B300	16	170-450	20-34

AWS A5.18: ER70S-3 EN 1668: W 42 2 W 2 Si 1

Wire type:

Approvals:

TIG Solid wire

Current:

-

Shielding gas: 11 = Pure Ar

Fer SG1 is our copper coated wire for TIG welding unalloyed and low alloyed, incl. fine grain types, structural steels. Typical applications include: general constructions, shipbuilding, bridges, tanks and is extremely suited for joining thin sheet metals. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WI 20

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry

Welding positions:

- Repair Shops
 - Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Velveta	SG 1	Hilcord 40	-	-	Fer G 1

Chemical composition, wt.% weld metal - typical:

The initial composition, it is /o moral moral. Typican											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,09	1,20	0,60	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 520	≥ 26	-20°C ≥ 80

Notes: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5

AWS A5.18: ER70S-2

EN 1668: W 42 2 W 2 Ti

Wire type: TIG Solid wire Current:

Welding positions:

Approvals: TüV Shielding gas: 11 = Pure Ar

Fer SG 1A is our copper coated wire for TIG welding unalloyed and low alloyed galvanized structural steels. We have added Ti, Zr and Al to the wire, this makes Fer SG 1A ideal for welding oxydized (rusted) material and also coated plate (primed or painted). To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WI 20

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

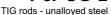
- · Shipyards/offshore
- · Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops
 - Car industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red Extra	SG 1A Superflow	Hilcord 40	-	H100 / HW530	

Chemical composition, wt.% weld metal - typical:

 The state of the s											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ti	Zr	Al
0,06	1,10	0,50	≤ 0,030	≤ 0,025					0,15	0,12	0,15


Note: single values for Ti, Zr, Al are maximum values

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 420	≥ 520	≥ 27	-20°C ≥ 80

Note: properties under pure Argon gas shielding

Dia.	Length	Weight /		
mm.	mm.	package kg.		
1,6	1000	5		
2,0	1000	5		
2,4	1000	5		
3,0	1000	5		

AWS A5.18: ER70S-6 EN 1668: W 46 2 W 3 Si 1

Wire type: TIG Solid wire Current:

Welding positions:

Approvals: TüV Shielding gas: 11 = Pure Ar

Fer SG 2 is our copper coated wire for TIG welding unalloyed and low alloyed, incl. fine grain types, structural steels. Typical applications include: general constructions, shipbuilding, bridges, tanks etc. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industryRepair Shops
- Car industry

Equivalent product in alternative welding process:

Equivalent product in alteri	Equivalent product in alternative welding process.								
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing				
Red Extra	K 60	Hilcord 40	-	H100 / HW530	Fer G 1				

Chemical composition, wt.% weld metal - typical:

CHEIIIC	onemical composition, wt. 70 weld metal – typical.										
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,08	1,40	0,85	≤ 0,030	≤ 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 460	≥ 560	≥ 22	-20°C ≥ 70

Notes: properties under pure Argon gas shielding

Dia.	Length	Weight /	
mm.	mm.	package kg.	
1,6	1000	5	
2,0	1000	5	
2,4	1000	5	
3,0	1000	5	

AWS A5.18: ER70S-6 EN 1668: W 46 4 W 4 Si 1

Wire type: TIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Fer SG 3 is our copper coated wire for TIG welding structural steels with a maximum tensile strength of 620 MPa. Typical applications include: general constructions, shipbuilding, bridges, tanks etc. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

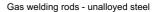
Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructionsPressure vessel & boiler industry
- Repair Shops
- Office furniture industry
- Car industry

Equivalent product in alternative welding process:

	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Bas	ic Directa	SG 3	Hilcord 51	-	H100 / HW 530	Fer G 2

Chemical composition, wt.% weld metal – typical:


ı	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
	0,10	1,75	0,90	≤ 0,030	≤ 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 480	≥ 600	≥ 24	-40°C ≥ 50

Notes: properties under pure Argon gas shielding

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5

AWS A5.2: R 45

EN 12536: O I

Wire type: OAW Solid wire Welding positions:

Approvals: TüV Shielding gas: Oxy-acetylene

Fer G 1 is our copper coated rod for oxy-acetylene gas welding of unalloyed structural steels. Fer G 1 is easy flowing and gives a very clean smooth weld. Operating temperature of the workpiece is maximum 350°C.

Base materials to be welded:

- Structural steel S185-255, St.33-St37.3
- Boiler steel P235GH-P265GH, HI, HII
- Pipe steel P235T1-L210, St.37.0-St.44.0

Applications:

- · Construction works
- Repair shops
- · Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red Extra	SG 1	Hilcord 40	Fer SG 1	H60 / HW 430	

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	0,50	0,15	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 280	≥ 360	≥ 20	+20°C ≥ 30

Note: properties under oxy-acetylene gas

Dia.	Length	Weight /	
mm.	mm.	package kg.	
1,6	1000	5 / 25	
2,0	1000	5 / 25	
2,4	1000	5 / 25	
3,0	1000	5 / 25	
4,0	1000	5 / 25	

AWS A5.2: R 60

EN 12536: O II

Wire type: OAW Solid wire Welding positions:

Approvals: TüV

Shielding gas: Oxy-acetylene

Fer G 2 is our copper coated rod for oxy-acetylene gas welding of unalloyed structural steels. Fer G 2 offers better mechanical properties than Fer G 1. The viscosity of the weld metal makes out-of-position welding very simple. Operating temperature of the workpiece is maximum 350°C.

Base materials to be welded:

- Structural steel S185-S275, St.33-St44.2
- Boiler steel P235GH-P265GH, HI, HII
- Pipe steel P235T1, L210, St.37.0-St.44.0

Applications:

- Construction works
- Pressure vessel & boiler industry
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red Extra	SG 2	Hilcord 40	Fer SG 2	H60 / HW 430	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,00	0,15	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 300	≥ 390	≥ 20	+20°C ≥ 50

Note: properties under oxy-acetylene gas

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5
4,0	1000	5

AWS A5.2: R 60-G

EN 12536: O III

Wire type: OAW Solid wire Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Fer G 3 is our copper coated rod with 0,5% Ni for oxy-acetylene gas welding unalloyed and low alloyed structural steels. Recommended for welding circumferential joints in pipes, where good penetration and good X-ray values is required. Fer G 3 does not spatter and it has an easy controllable molten pool. Operating temperature of the workpiece is maximum 350°C.

Base materials to be welded:

- Structural steel S185-S275, St.33-St50.2
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Pipe steel P235T1, L210, St.37.0-St.52.0, St45.8 X42, StE210.7

Applications:

- Construction works
- · Pressure vessel & boiler industry
- Repair shops
- · Gas industry

Equivalent product in alternative welding process:

S	MAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basi	c Directa	SG 3	Hilcord 40	Fer SG 3	H100 / HW 430	-

Chemical composition, wt.% weld metal - typical:

С	Mn		Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,10	1,10)	0,20	≤ 0,030	≤ 0,030		0,50					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 310	≥ 410	≥ 22	+20°C ≥ 60

Notes: properties under oxy-acetylene gas

Dia. mm.	Length mm.	Weight / package kg.
2,0	1000	5
2,4	1000	5
3,0	1000	5

AWS A5.2: R 60-G

EN 12536: O IV

Wire type: OAW Solid wire Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Fer G 4 is our copper coated rod with 0,5% Mo content for oxy-acetylene gas welding fine grain and creep resistant Mo steels like 16Mo3. Very smoothly flowing wire with no loss due to spatter. Approved for working temperatures up to 500°C. Also available as non copper coated rod.

Base materials to be welded:

- Structural steel S185-S355J2, St.33-St52.3, St50.2
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4 16Mo3, 15Mo3
- Fine grain steel S275N-S500N, P355NH-P460NH, S355NL-S500NL
- Pipe steel P235T1-P355N, L210-L360MB, St.37.0-St.52.4, St 45.8, X42-X52, StE210.7-StE360.7TM

Applications:

- Construction works
- · Pressure vessel & boiler industry
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 12 Mo	SG Mo	Hilcord 60M	Fer SG Mo	H100Mo / HW530	-

Chemical composition, wt.% weld metal - typical:

Ontonino	ii compoc	ntion, wt.	70 WOIG III	ota. typ	.ou						
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,11	1,10	0,20	≤ 0,030	≤ 0,030			0,50				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 350	≥ 450	≥ 22	+20°C ≥ 60

Note: properties under oxy-acetylene gas

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5
4,0	1000	5

AWS A5.17: EL 12

EN 756: S 1

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

HW 430: BV, CL, DNV, LR

H 60 is our solid wire for submerged arc welding of unalloyed and low alloyed structural steels in combination with Hilcoweld fluxes HW 430, HW 450. Also suitable for hardfacing bulldozer tracks in combination with Hilcoweld flux HW 400.

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

Equivalent produc	Equivalent product in alternative welding process.								
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing				
Red Extra	K 60	Hilcord 40	Fer SG 2	-	Fer G 1				

Chemical composition wire, wt.%:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	0,50	0,10	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa			Tensile strength MPa		Elongation Lo=5d - %		Impact Values ISO-V J	
In combination with flux	HW 430	HW 450	HW 430	HW 450	HW 430	HW 450	HW 430	HW 450 +20°C > 40	
As welded	<u>></u> 400	<u>></u> 380	<u>></u> 500	<u>></u> 500	≥ 25	≥ 26	0°C <u>></u> 50	+20 C <u>></u> 40	

Note: Combination with flux HW 400 gives a hardness of max. 400 HB.

Dia. mm.	Spooltype	Weight / spool kg.
2,5	B415	25
3,2	B415	25
4,0	B415	25
4,8	B415	25

AWS A5.17: EM 12

EN 756: S 2

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

HW 530: ABS, BV, CL, DNV, GL, LR, TüV

HW 580: BV, CL, DNV, LR

H 100 is our solid wire for submerged arc welding of unalloyed and low alloyed structural steels in combination with Hilcoweld fluxes HW 430, HW 530, HW 580. H 100 is the ideal choice for shipbuilding, general constructions and pressure vessel industries.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry

Equivalent product in alternative welding process:

Equitations product	ot iii aitoi iiativo wo	iaing process.			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basic Directa	K 60	Hilcord 51	Fer SG 2	-	Fer G 2

Chemical composition wire, wt.%:

С	Mn	Si	S	P	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,00	0,10	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2%	Yield stı MPa	ength	Tensile strength MPa		Elongation Lo=5d - %			Impact Values ISO-V J			
In combination with flux	HW430	HW530	HW580	HW430	HW530	HW580	HW430	HW530	HW580	HW430	HW530	HW580
As welded	<u>></u> 400	≥ 400	≥ 510	<u>></u> 520	≥ 520	≥ 600	<u>></u> 25	≥ 26	≥ 26	-20°C 27	-40°C 50	-40°C 70

Dia. mm.	Spooltype	Weight / spool kg.
2,0	B415	25
2,5	B415	25
3,2	B415	25
4,0	B415	25

AWS A5.17: EM 12K

EN 756: S 2 Si

Wire type: SAW Solid wire

Approvals in combination with flux:

- II 400 Ci ia ave alliana allava

H 100 Si is our silicon alloyed wire for submerged arc welding of unalloyed and low alloyed structural steels in combination with Hilcoweld fluxes HW 430, HW 530, HW 580. Applications include shipbuilding, general construction and pressure vessel industries.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
 Fine grain steel P275N P355NI 2, S275N S420N
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red Extra	K 60	Hilcord 40	Fer SG 2	-	Fer G 2

Chemical composition wire, wt.%:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,00	0,30	≤ 0.030	≤ 0.030							

Mechanical properties, weld metal - typical:

Condition	MPa		Tensile strength MPa			Elongation Lo=5d - %			Impact Values ISO-V J			
In combination with flux	HW430	HW530	HW580	HW430	HW530	HW580	HW430	HW530	HW580	HW430	HW530	HW580
As welded	≥ 400	≥ 430	≥ 480	<u>></u> 520	≥ 530	≥ 550	<u>></u> 25	≥ 28	≥ 27	-20°C 27J	-20°C 80J	-20°C 80J

	Packaging:							
Dia.	Weight /							
mm.		spool kg.						
2,0	B415	25						
2,5	B415	25						
3,2	B415	25						
4,0	B415	25						

Hilcord 100

AWS A5.18: EC1

EN 756: S 0

Wire type: SAW Cored wire

achieved can be up to +20% higher than with the same size of solid wire at the same welding parameters.

Welding positions:

Approvals in combination with flux:

Hilcord 100 is our metal cored wire for submerged arc welding of unalloyed and low alloyed structural steels in combination with Hilcoweld fluxes HW 430, HW 530. Hilcord 100 offers exceptional productivity as deposition rates

Base materials to be welded:

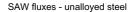
- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry

Equivalent product in alternative welding process:

SMAW	1	GMAW	FCAW	GTAW	SAW	OAW
Red Ext	ra	K 60	Hilcord 52	Fer SG 2	ı	Fer G 2


Chemical composition wire, wt.%:

I	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,10	1,50	0,60									

Mechanical properties, weld metal - typical:

Condition		d strength Pa	Tensile strength MPa		Elongation Lo=5d - %		Impact Values ISO-V J	
In combination with flux	HW430	HW530	HW430	HW530	HW430	HW530	HW430	HW530
As welded	<u>></u> 440	≥ 490	<u>></u> 560	≥ 540	<u>></u> 28	≥ 28	-20°C ≥ 27	-20°C ≥ 40

Dia. mm.	Spooltype	Weight / spool kg.
2,0	B415	25
2,4	B415	25
3,2	B415	25

EN 760: S F MS 1 67 AC

AWS A5.17: F6A0-EL12 / F7A2-EM12(K) EN 756: S 35 0 MS S1 / S 42 3 MS S2

Flux type:

Fused, Mn/Si alloying

Grain size: 12x150

=+ **Current:**

Welding positions:

Approvals in combination with wire:

-

HW 150 is our fused flux for submerged arc welding unalloyed and low alloyed structural steels in combination with solid wires H60, H100. HW 150 is suitable for single and multipass welding, for fillet welds and multi wire applications. The weld has an excellent appearance and the slag is self-releasing. The basicity index is 0,8 ca. (Boniszewski).

Applications:

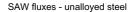
Shipyards/offshore

Construction works

Repair Shops

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45


Chemical composition, wt.% weld metal - typical:

	,		.71					
Type of wire	С	Si	Mn	Ni	Мо	Cr	P	S
H 60	0,05	0,40	1,00					
H 100	0,05	0,40	1,40					

Mechanical properties, weld metal - typical:

Condition		0,2% Yield strength		Elongation	lm	oact Valu	ues ISO-	_
A = as we	lded	MPa	MPa	Lo=5d - %	+20°C	0°C	-20°C	-40°C
H 60	Α	<u>></u> 360	<u>></u> 470	<u>></u> 27		<u>></u> 60		
H 100	Α	<u>></u> 440	<u>≥</u> 560	<u>≥</u> 22		<u>></u> 50		

type	Weight / kg.
bag	25 kilo

EN 760: S F MS 1 67 AC

AWS A5.17: F7A0-EL12 / F7A0-EM12(K)

EN 756: S 42 0 MS S1 / S 42 0 MS S2

Flux type:

Fused, Mn/Si alloying

Grain size: 40x150

=+ **Current:**

Welding positions:

Approvals in combination with wire:

-

HW 155 is our fused flux for submerged arc welding unalloyed and low alloyed structural steels in combination with solid wires H60, H100. HW 155 is specifically developed for high speed welding on thin sheet metals (3 to 5 mm. thickness). Typical applications include the manufacturing of lamp and telephone poles. Flux is suitable for single and multipass welding, for fillet welds and multi wire applications. The weld has an excellent appearance and the slag is self-releasing. The basicity index is 0,9 ca. (Boniszewski).

Applications:

Shipyards/offshore

Construction works

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Chemical composition, wt.% weld metal - typical:

- Citation Compe	O		1) p. cu					
Type of wire	С	Si	Mn	Ni	Мо	Cr	P	S
H 60	0,04	0,20	1,20					
H 100	0.04	0,30	1,30					

Mechanical properties, weld metal - typical:

Condit	ion	0,2% Yield strength	Tensile strength	Elongation	lm	oact Val	ues ISO-	٧J
A = as w	elded	MPa	MPa	Lo=5d - %	+20°C	0°C	-20°C	-40°C
H 60	Α	<u>></u> 420	<u>></u> 520	<u>></u> 22		<u>></u> 45		
H 100	Α	<u>></u> 440	<u>≥</u> 560	<u>></u> 22		<u>></u> 45	<u>></u> 30	

· ·····g···g ······					
type	Weight / kg.				
bag	25 kilo				

EN 760: S A AR 1 87 AC

AWS A5.17: F7A0-EL12 / F7A0-EM12 / F7A0-EM12K / F7A0-EC1 EN 756: S 4T A AR S1 / S 4T 0 AR S2 / S 4T 0 AR S2Si / S 42 0 AR S0

Flux type:

Agglomerated rutile, Mn/Si alloying

Welding positions:

Approvals in combination with wire:

H 60: BV, CL, DNV, LR

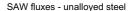
HW 430 is our agglomerated rutile flux for submerged arc welding unalloyed and low alloyed structural steels in combination with solid wires H60, H100, H100Si and metalcored wire Hilcord 100. HW 430 is suitable for single and multipass welding, for fillet welds and multi wire applications. The weld has an excellent appearance and the slag is self-releasing. Flux/wire usage ratio 1:1, the basicity index is 0,4 ca. (Boniszewski).

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry


Chemical composition, wt.% weld metal - typical:

			- 7					
Type of wire	С	Si	Mn	Ni	Мо	Cr	Р	S
H 60	0,04	0,80	1,20					
H 100	0,04	0,80	1,40					
H 100 Si	0,04	1,10	1,50					
Hilcord 100	0.08	1 40	1 70					

Mechanical properties, weld metal – typical:

Condition	l	0,2% Yield strength	Tensile strength	Elongation	lm	oact Valu	ues ISO-	٧J
A = as welde	ed	MPa	MPa	Lo=5d - %	+20°C	0°C	-20°C	-40°C
H 60	Α	<u>></u> 400	<u>≥</u> 500	<u>></u> 25		<u>></u> 50		
H 100	Α	<u>></u> 400	<u>></u> 520	<u>></u> 25		<u>></u> 40	<u>></u> 27	
H 100 Si	Α	<u>></u> 400	<u>></u> 520	<u>></u> 25		<u>></u> 40	<u>></u> 27	
Hilcord 100	Α	≥ 440	≥ 560	≥ 28		≥ 40	≥ 27	

type	Weight / kg.
bag	25 kilo

EN 760: S A MS 1 99 AC AWS A5.17: F7AZ-EL12 EN 756: S 42 A MS S1

Flux type:

Agglomerated rutile, Mn/Si alloying

Approvals in combination with wire:

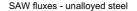
HW 450 is our agglomerated rutile flux for submerged arc welding unalloyed and low alloyed structural steels in combination with solid wire H60. HW 450 is specifically developed for applications where a "breathing" flux is required f.i. working temperatures up to 500°C. Typical applications include reconditioning pistons. HW 450 is suitable for single pass welding, for fillet welds and multi wire applications. The weld has an excellent appearance and the slag is self-releasing. Flux/wire ratio is very economical < 0,7:1.

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops
 - Office furniture industry


Chemical composition, wt.% weld metal - typical:

Type of wire	С	Si	Mn	Ni	Мо	Cr	Р	S
H 60	0,05	1,10	1,10					

Mechanical properties, weld metal - typical:

moonanoa	. p. opo.t	roo, mora motal typico	•••					
Condit	tion	0,2% Yield strength	Tensile	Elongation	lm	pact Val	ues ISO-	٧J
A = as w	elded	MPa	strength	Lo=5d - %	+20°C	0°C	-20°C	-40°C
			MPa					
H 60	Α	<u>≥</u> 400	<u>></u> 500	<u>></u> 26		≥ 40		

type	Weight / kg.
bag	25 kilo

EN 760: S A AB 1 67 AC H5

AWS A5.17: F7AP4-EM12 / F7AP4-EM12K / F7A2-EC1 EN 756: S 42 3 AB S2 / S 42 3 AB S2Si / S 42 2 AB S0

Flux type:

Agglomerated (semi) basic

Welding Current:

Welding positions:

→

Approvals in combination with wire:

H100: ABS, BV, CL, DNV, GL, LR, TüV

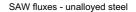
HW 530 is our agglomerated semi-basic flux for submerged arc welding unalloyed and low alloyed structural steels in combination with solid mild steel wires H100, H100Si and metalcored wire Hilcord 100. HW 530 is suitable for single and multipass welding, for fillet welds and multi wire applications. The weld has an excellent appearance and the slag is self-releasing. The weld metal, produced in combination with corresponding wires, offers good mechanical properties also at low temperatures. The basicity index is 1,3 ca. (Boniszewski).

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops


Chemical composition, wt.% weld metal - typical:

Type of wire	С	Si	Mn	Ni	Мо	Cu	Р	S
H 100	0,04	0,40	1,30					
H 100 Si	0,04	0,60	1,30					
Hilcord 100	0.08	1,00	1.50					

Mechanical properties, weld metal – typical:

Conditio A = as weld	ed	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impac 0°C	t Values IS -20°C	O-V J -40°C
S = stress relieved 6	320°C 1 hr.						
H 100	Α	<u>></u> 400	<u>></u> 520	<u>></u> 26	-	100	50
H 100	S	<u>></u> 400	<u>≥</u> 500	<u>></u> 25	-	110	50
H 100 Si	Α	<u>≥</u> 400	<u>≥</u> 530	<u>≥</u> 28	100	80	-
H 100 Si	S	<u>≥</u> 400	<u>≥</u> 500	<u>≥</u> 25	100	80	-
Hilcord 100	Α	≥ 490	≥ 540	≥ 28	-	40	-

type	Weight / kg.
bag	25 kilo

EN 760: S A AR 3 CrMo AC

AWS A5.17: F6AZ-EL12 EN 756: S 35 Z AR S1

Approvals in combination with wire:

HW 400 is our agglomerated rutile flux for surfacing parts subject to wear using the submerged arc welding process. HW 400 is specifically developed for reconditioning bulldozer tracks and similar applications.

Base materials to be welded:

Applications:

Repair shops

Chemical composition, wt.% weld metal - typical:

	,,		-7					
Type of wire	С	Si	Mn	Ni	Мо	Cr	Р	S
H 60 (3 rd layer)	0,25	0,70	2,00		0,5	3,0		

Mechanical properties, weld metal - typical:

IV	mechanical properties, weld metal – typical.							
	Condition	0,2% Yield strength		Elongation	Hardness			
	A= as welded	MPa	MPa	Lo=5d - %				
F	I 60 A	> 360	> 450	> 22	400 HB			

type	Weight / kg.
bag	25 kilo

Coating type:

Special

Arc voltage: 70V

Approvals: Tip
- Viol

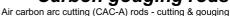
Current:

Tip colour: Violet Welding positions:

Printing: CUTIL

Cutil is our electrode for cutting, gouging, chamfering and piercing of all metals, including stainless, aluminium, cast iron and non ferrous alloys. Cutil guarantees welders easy performance, high cutting and gouging rates and easy handling. Take precautions when using: when grooving it is advised to lift the work so that the molten parent metal can run off better. The electrode should be set as horizontal as possible to the workpiece and kept in contact constantly. Push the electrode slightly to increase the working speed.

Base materials to be welded:


- Structural steels
- · Stainless steels
- Aluminium
- Nickel alloys
- Cast iron

Applications:

· All industries related to welding

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
3,2	350	37,9	130-180
4,0	450	72,9	170-230
5,0	450	107,1	210-390

Coating type: Copper coated

Current:

Arc voltage: 35-55V - power source needs OCV ≥ 60V

Carbon gouging rods are copper-coated air carbon arc cutting rods made from a mixture of graphite and pure carbon. Typical applications can be found in every field of metalworking, in foundries, steel constructions, shipbuilding, repair & maintenance. Carbon gouging rods are used for weld edge preparations, back-gouging in multipass welding, removing unsatisfactory welds, bolt and wire ends, spatter removal, all kinds of cutting.

Base materials to be welded:

- · Carbon, low-alloyed steels
- Stainless steels
- Aluminium
- Nickel allovs
- Cast iron
- Copper alloysMagnesium

Applications

· All industries related to welding

Process description, recommendations for usage

Carbon gouging rods remove molten metal with a jet of air. The intense heat of an arc between the carbon-graphite electrode and a workpiece melts a portion of the metal, while simultaneously a jet of air is passed through the arc to blow away the molten metal. The process (Air carbon arc cutting - CAC-A) is used for cutting and gouging, and it can be done manually or mechanized. Carbon steel, stainless steel, copper alloys, cast irons, aluminium, magnesium and nickel alloys can all be cut with Carbon gouging rods. The process requires an electrode holder, cutting electrodes, a power source and an air supply. Manual electrode holders are similar to shielded metal arc electrode holders (stick electrode holders). The electrode is held in a rotatable head containing air orifices. A valve is provided to turn the air on and off. Carbon gouging rods are round, pointed and copper coated. They are intended to use at DC current.

Base material	Electrode	Current	Remarks
Carbon, low-alloyed steels	DC	= +	-
Stainless steels	DC	= +	-
Aluminium	DC	= +	Extend electrode no more than 10 cm.
Nickel alloys	DC	= -	-
Cast iron	DC	= -	At middle of electrode current range
	DC	= +	At maximum current only
Copper alloys	DC	= +	At maximum current only
Magnesium	DC	= +	Clean surface before welding

Dia.	Length	Current
mm.	mm.	Α
4,0	305	90-150
5,0	305	150-200
6,3	305	200-400
8,0	305	250-450
10,0	305	350-600

hilaa

Low alloyed steel

Weldability of base materials

Weather resistant steel

Weather resistant steels of Cor-Ten type have excellent weldability. All welding methods can be used when proper precautions are taken. In general matching filler metals should be used. For dissimilar joining i.e. weather resistant steel grades of different strength undermatching filler metals can be used, in such cases we recommend you to contact us for information.

When welding weather resistant steels it is important to minimize the risk of cold cracking (also known as hydrogen cracking or delayed cracking). Hydrogen in weld metal combined to stresses in the welded structure is the main reason for such cracking. The risk of cracking can be minimized by:

- preheating the base materials before welding
- · ensuring that the joint surfaces are perfectly clean and dry
- minimizing the shrinkage stresses
- use a low hydrogen filler metal (H_{DM} < 5 ml / 100 gr. deposit weld metal)

Creep resisting steel

Such steels are used for the creep resistance in medium-high to high temperature applications. Depending on the temperature for which they are intended, both base material and filler metals should guarantee strength properties at their respective working temperature. For exact welding recommendations we advise you to contact us.

In general are low alloyed creep resisting steels excellent weldable. Before, during and after welding special precautions should be taken on heat-treatment (preheating), interpass temperatures and post-weld heat-treatment (PWHT).

For more information we recommend you to contact us for information about the exact treatment for your application. In such case please specify the base materials used and provide us with as much specific information as possible.

High strength steel

Low alloyed high strength steels offer users the possibility of reducing the dead weight of a construction and so increasing the possibilities of the same. Steels of this kind are widely used for pressure vessels, mobile cranes, lifting equipment, vehicle frames etc.

Low alloyed high strength steels owe their strength to their lowest as possible alloying content and their specific production process. As a result they can be welded easily when special precautions are taken. After welding it is important that the steel structure has maintained its specific microstructure giving the steel its high strength and toughness. It is therefore of utmost importance to give special attention to shear cutting, machining, forming, cold bending, folding as well as thermal cutting and welding. The welding process may bring a change in the steel's microstructure. If not done properly the base materials will loose its strength.

Take special and extra precautions when welding low alloyed high strength steels:

- ensure that the joint surfaces are perfectly clean and dry
- minimize the shrinkage stresses
- use the lowest heat input possible
- use a low hydrogen filler metal (H_{DM} < 5 ml / 100 gr. deposit weld metal)
- follow the PWHT recommendations of your filler metal supplier, post-heat the welded joint immediately after welding, the PWHT temperature should be the same as the preheat temperature.

When welding low alloyed high strength steels it is important to minimize the risk of cold cracking (also known as hydrogen cracking or delayed cracking). Hydrogen in weld metal combined to stresses in the welded structure is the main reason for such cracking.

The known DIN designations 1629, 1681, 17100, 17102, 17155 and 17172 have been replaced by EN standards. A summary of both old designations and their replacements is as follows:

	OLD DESIGNATION	ON (DIN)	EN STANDARD	(NEW)
Base materials	DIN	designation	EN	designation
		St. 37.0		P235T1
		St. 37.4		P235T2
Pipe steel	DIN 1629 / 1630	St. 44.0	EN 10216-1	P275T1
		St. 44.4		P275T2
		St. 52.0		P355N
		0 02.10	1	
		GS-45		GP240R
Cast steel	DIN 1681	GS-52	EN 10213-2	GP240H T1/T2
		100 02		0.2.0
		St. 33		S185
		St. 37-2		S235JR
		USt. 37-2		S235JRG1
		RSt. 37-2		S235JRG2
		St. 37-3U		S235J0
		St. 37-3N		S235J2G3
		St. 44-2		S275JR
Structural steel	DIN 17100	St. 44-3U	EN 10025	S275J0
		St. 44-3N		S275J2G3
		St. 52-3U		S355J0
		St. 52-3N		S355J2G3
		St. 50-2		E295
		St. 60-2		E335
		St. 70-2		E360
		St. 70-2		L300
		StE 285		P275N
		WStE 285		P275NH
		TStE 285		P275NL1
		EStE 285		P275NL2
		StE 355		P355N
		WStE 355		P355NH
		TStE 355	EN 10028-3	P355NL1
		EStE 355		P355NL2
		StE 460	+	P460N
		WStE 460		P460NH
Fine grain steel	DIN 17 102	TStE 460	+	P460NL1
Tille grain steel		EStE 460		P460NL1
		StE 285 / - TStE 285 / -	-	S275N / S275M S275NL / S275ML
			-	
		StE 355 / BStE 355 TM	=	S355N / S355M
		TStE 355 / BTStE355 TM	EN 10113-2/3	S355NL / S355ML
		StE 420 / BStE 420 TM	-	S420N / S420M
		TStE 420 / BTStE420 TM	-	S420NL / S420ML
		StE 460 / BStE 460 TM	-	S460N / S460M
		TStE 460 / BTStE460 TM		S460 NL / S460 ML

Low alloyed steel European standard for base materials to be welded

	OLD DESIGNA	ATION (DIN)	EN STANDARD (NEW)		
Base materials	DIN	designation	EN	designation	
		HI		P235GH	
		HII		P265GH	
		17 Mn 4		P295GH	
Boiler steel	DIN 17 155	19 Mn 6	EN 10028-2	P355GH	
		15 Mo 3		16 Mo 3	
		13 CrMo 4 4		13 CrMo 4-5	
		10 CrMo 9 10		10 CrMo 9-10	

Fine grain steel (high strength steel)		TStE 460 V		S460QL
	-	StE 500 V / TStE 500 V	EN 10137-2	S500Q / S500QL
		StE 550 V / TStE 550 V		S550Q / S550QL
		StE 620 V / TStE 620 V		S620Q / S620QL
		StE 690 V / TStE 690 V		S690Q / S690QL
		TStE 890 V / TStE 960 V		S890QL / S960QL

Fine grain steel	S235JRW-S355JRW	S235J2G3Cu-S355J2G3Cu
(weather resistant)		

	OLD DESIGNA	ATION (DIN)	EN STANDAR	EN STANDARD (NEW)		
Base materials	DIN	designation	EN	designation	design.	
		StE290.7		L240MB	X42	
		StE290.7TM		L290MB		
		StE240.7		L240NB		
		StE290.7		L290NB		
		StE320.7		L320NB	X46	
		StE360.7TM		L360MB	X52	
Pipe steel	DIN 17 172	StE360.7	EN 10208-2	L360NB		
		StE385.7		L385NB	X56	
		StE415.7		L415NB		
		StE415.7TM		L415MB	X60	
		StE445.7TM		L445MB	X65	
		StE480.7TM		L480MB	X70	
		StE550.7TM		L550MB	X80	

	DESIGNATION	EN STANDARD (NEW)		
	Grade A	S235JRS2		
	Grade AH32	S315G1S		
	Grade AH36	S355G1S		
	Grade AH40	-		
	Grade B	-		
	Grade D	S235J2S1.0		
Ships plate	Grade DH32	S315G2S		
	Grade DH36	S355G2S		
	Grade DH40	-		
	Grade E	S235J4S		
	Grade EH32	EN 17102: P315N		
	Grade EH36	S355G3S		
	Grade EH40	-		

AWS A5.5: E 7018-A1

EN 1599: E Mo B 32 H 5

Coating type:

Basic

Arc Voltage: 70V

Approvals:

TüV

Current:

=+ =-

Tip colour:

Welding positions:

Printing:

Hilco B 12 Mo

B 12Mo is our basic-coated low hydrogen (H_{DM} < 5 ml. / 100 gr. deposit weld metal) electrode for welding low alloyed fine grain and creep resisting steels like 16Mo3 up to a maximum operating temperature of 500°C. Typical applications include the construction of pressure vessels, boilers and pipes. B 12Mo is preferably welded on DC current, root pass and narrow gap welding on DC- polarity.

Base materials to be welded:

- Boiler steel P235GH-P310GH, 16Mo3, 17Mo3, 16Mo5, 14Mo6, 15NiCuMoNb5, 17MnMoV64, A355 Grade P1
- Fine grain steel S275N-S500N, P355NH-P460NH, S355NL-S500NL
- Pipe steel L320NB-L415NB, L360MB-L415MB API 5L X52-X70

Applications:

- Pressure vessel & boiler industry
- Pipelines
- Repair shops
- · Heat exchanger industry
- Steel mills
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	SG Mo	Hilcord 60M	Fer SG Mo	H100Mo / HW530	Fer G 4

Chemical composition, wt. % weld metal - typical:

-												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,06	0,80	0,40	≤ 0,010	≤ 0,020			0,50				

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 480	≥ 560	≥ 22	-40°C ≥ 40
Stress relieved	≥ 460	≥ 560	≥ 22	-40°C ≥ 60

Note: stress relieved condition 620°C / 2 h.

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	22,7	80-110
3,2	350	37,5	100-140
4,0	350	55,3	130-180
5,0	450	109,1	190-230

AWS A5.5: E 8018-B2

EN 1599: E Cr Mo 1 B 42 H5

Coating type:

Basic

Current:

Arc Voltage: 70V

Approvals:

TüV

Tip colour:

Welding positions:

Printing:

Hilco B 19 CrMo

B 19 CrMo is our basic-coated low hydrogen ($H_{DM} < 5$ ml. / 100 gr. deposit weld metal) for welding low alloyed fine grain and creep resisting steels like 13CrMo4 5 up to a maximum operating temperature of 550°C. Typical applications include the construction of pressure vessels, boilers and pipes. B 19CrMo is preferably welded on DC current, root pass and narrow gap welding on DC- polarity.

Base materials to be welded:

- Boiler steel 13CrMo4-5, 15CrMo5, 16CrMoV4, A 333 Grade P 11, P 12, G-17CrMo5-5, 22Mo4, G-22CrMo 5-4, 42CrMo4,
- Heat treatable steels up to 780 MPa tensile strength
- · Case hardening and nitriding steels

Applications:

- Pressure vessel & boiler industry
- Pipelines
- Repair shops
- Heat exchanger industry
- Steel mills
- · Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	SG CrMo 1	Hilcord 61M	Fer SG CrMo 1	H100CrMo1/HW 580	-

Chemical composition, wt. % weld metal – typical:

ı	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,07	0,80	0,40	≤ 0.020	≤ 0.020	1,10		0,50				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
Stress relieved	≥ 490	≥ 590	≥ 22	+20°C ≥ 100

Notes: stress relieved condition 680°C / 2 h. - preheat, interpass and PWHT are essential for obtaining properties as indicated. For welding 13CrMo4-5 preheat 200-250°C, PWHT 660-700°C min. 1/2 h., cool down slowly

Dia. mm.			Current A		
2,5	350	1000 pcs. 23,6	80-110		
3,2	350	38,3	100-140		
4,0	350	55,3	130-180		

AWS A5.5: E 9018-B3

EN 1599: E Cr Mo 2 B 42 H5

Coating type:

Basic

Arc Voltage: 70V

Approvals:

Current:

Tip colour:

Welding positions:

Printing:

Hilco B 20 CrMo

B 20 CrMo is our basic-coated low hydrogen (H_{DM} < 5 ml. / 100 gr. deposit weld metal) electrode for welding low alloyed fine grain and creep resisting steels like 10CrMo9.10 up to a maximum operating temperature of 600°C. Typical applications include the construction of pressure vessels, boilers and pipes. B 20CrMo is preferably welded on DC current, root pass and narrow gap welding on DC- polarity.

Base materials to be welded:

- Boiler steel 10CrMo9.10, A335 Grade P22, 10CrSiMoV7 (1.8075), G17CrMo9.10 (1.7379)
- · Heat treatable steels up to 980 MPa tensile strength
- · Case hardening and nitriding steels

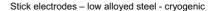
Applications:

- · Pressure vessel & boiler industry
- Pipelines
- · Repair shops
- · Heat exchanger industry
- Steel mills
- Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	SG CrMo 2	Hilcord 62M	Fer SG CrMo 2	H60CrMo2/HW580	-

Chemical composition, wt. % weld metal - typical:


ſ	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
ı	0,07	0,80	0,40	≤ 0,020	≤ 0,025	2,20		1,00				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
Stress relieved	≥ 530	≥ 620	≥ 20	+20°C ≥ 100

Notes: stress relieved condition 730° C / 2 h. - preheat, interpass and PWHT are essential for obtaining properties as indicated. For welding 10CrMo9.10 preheat 200-300°C, PWHT 660-730°C min. 1/2 h., cool down slowly

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
3,2	350	39,2	90-145
4,0	350	56,5	120-185

AWS A5.5: E 8018-C3

EN 499: E 46 6 1Ni B 32 H5

Coating type:

Basic

Arc voltage: 70V

Approvals:

Current:

∼ =- =+

Tip colour:

Welding positions:

Printing:

BASIC 70 / E8018-C3

Basic 70 is our basic-coated low hydrogen (H_{DM} < 5 ml. / 100 gr. deposit weld metal) electrode for welding low alloyed structural steels having a nominal yield strength up to 550 MPa used in applications where good sub-zero toughness is required down to -60°C. Typical applications include heavy machinery, petrochemical equipment and offshore constructions. Basic 70 is an all-current type (AC/DC).

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355K2G4, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH
- Fine grain steel SP355NL2-S500QL1, S275N-S420ML
- Pipe steel P235T1-P355N, L360-L485MB/NB, St37.0-St52.4, St45.8, X52-X70
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	SGNi 1	Hilcord 43	Fer SG Ni1	H100 Ni1/HW530	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,05	1,00	0,45	≤ 0,005	≤ 0,010		0,90					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 480	≥ 580	≥ 23	-60°C ≥ 70
Stress relieved	≥ 470	≥ 560	≥ 25	-60°C ≥ 50

Notes: stress relieved condition 620°C / 1 h. - preheat and PWHT should match with the requirements of the base metal.

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	19,5	60-110
3,2	350	38,2	80-155
4,0	450	75,0	140-210
5,0	450	107,1	200-270

AWS A5.28: ER80S-G

EN 440: G 42 2 C G 0 / G 46 2 M G 0

Wire type:

MAG Solid wire

Current:

=+

Welding positions:

Approvals:

Shielding gas:

 $C1 = CO_2$, $M11-M33 = ArCO_2-ArCO_2O_2$

SG Cor-Ten is our solid wire for MAG welding low alloyed weather resistant steels like Cor-Ten A, B, Patinax and similar CuNi-alloyed steels. Typical applications include steel structures, bridge constructions, railwaycars.

Base materials to be welded:

 Weather resistant steel S235J2G3Cu-S355J2G3Cu S235JRW-S355JRW, S235J2W-S355J2W
 Corten, Patinax, Alcodur 50, Koralpin 52, Domex

Applications:

- Shipyards/offshore
- · Construction works
- · Bridge & road constructions
- Rail wagons
- Container frames

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	Hilcord Cor-Ten	Fer Cor-Ten	Cor-Ten / HW530	-

Chemical composition, wt.% weld metal - typical:

С		Mn	Si	S	P	Cr	Ni	Мо	Cu	Nb	٧	Al
0,1	0	1,40	0,80	≤ 0,025	≤ 0,025	0,40	0,40		0,40			

Mechanical properties, weld metal - typical:

As welded > 460 > 550 > 24 -20°C > 80	Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
7.5.115.1353 = 150 = 500 = 24 = 20 0 2 00	As welded	≥ 460	<u>></u> 550	≥ 24	-20°C ≥ 80

Note: properties under M21 = ArCO₂ gas shielding

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
0,8	B300	16	80-180	17-20
1,0	B300	16	160-260	18-26
1,2	B300	16	180-300	20-29

AWS A5.28: ER 110 S-G

Wire type: MAG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: M21 = ArCO₂

K 80 is our solid wire for MAG welding low alloyed high strength steels having a nominal yield strength of 690 MPa such as: HY 80, N-A-XTRA 63, N-A-XTRA 70, Weldox 700, Grade 100, USS T-1 and similar HSLA steel grades. Typical applications include crane fabrication, automotive and transport industries. A low heat input is recommended to obtain the mechanical properties desired.

Base materials to be welded:

- Fine grain steel S620QL1, S690QL1, S700MC
 N-A-XTRA 63-70, TStE620-TStE690, T1, Weldox 700
- Pipe steel L480-L550, API 5L X65-X80

Applications:

- Construction works
- Pipelines
- · Transport & lifting industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	Hilcord 59M	K80 (TIG)	H150NiCrMo1 / HW 580	-

Chemical composition, wt.% weld metal - typical:


1	C	Mn	Si	S	P	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,08	1,50	0,60	≤ 0,025	≤ 0,025	0,35	1,50	0,25	< 0,25		0,09	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 690	<u>></u> 750	≥ 17	-40°C ≥ 50

Note: properties under M21 = ArCO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
1,0	B300	16	120-240	17-22
1,2	B300	16	160-260	18-26

AWS A5.28: ER 80S-G (nearest ER 80S-D2)

EN 440: G 46 2 M G 2 Mo

EN 12070: G MoSi

Wire type: MAG Solid wire Current:

Welding positions:

Approvals:

Shielding gas:

 $M11-M33 = ArCO_2-ArCO_2O_2$

SG Mo is our solid wire for MAG welding of low alloyed fine grain and creep resisting steels like 16Mo3 up to a maximum operating temperature of 500°C. Typical applications include the construction of pressure vessels, boilers and pipes.

Base materials to be welded:

- Boiler steel P235GH-P310GH, 16Mo3, 17Mo3, 16Mo5, 14Mo6, 15NiCuMoNb5, 17MnMoV64, A355 Grade P1
- Fine grain steel S275N-S500N, P355NH-P460NH, S355NL-S500NL
- Pipe steel L320NB-L415NB, L360MB-L415MB API 5L X52-X70

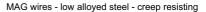
Applications:

- Pressure vessel & boiler industry
- Pipelines
- · Repair shops
- Heat exchanger industry
- · Steel mills
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 12 Mo	-	Hilcord 60M	Fer SG Mo	H100Mo / HW530	Fer G 4

Chemical composition, wt.% weld metal – typical:


1	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,10	1,10	0,60	≤ 0,025	≤ 0,025			0,50				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 480	<u>≥</u> 560	≥ 22	-20°C ≥ 60

Note: properties under M21 = ArCO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V	
0,8	BS300	15	80-180	17-20	
1,0	BS300	15	120-240	18-26	
1,2	BS300	15	160-260	20-29	

AWS A5.28: ER 80S-G (nearest ER 80S-B2)

EN 12070: G CrMo 1 Si

Wire type:

MAG Solid wire

Current:

Welding positions:

Approvals: TüV

Shielding gas:

 $M11-M33 = ArCO_2-ArCO_2O_2$

SG CrMo1 is our solid wire for MAG welding low alloyed fine grain and creep resisting steels like 13CrMo4 5 up to a maximum operating temperature of 550°C. Typical applications include the construction of pressure vessels, boilers and pipes.

Base materials to be welded:

- Boiler steel 13CrMo4-5, 15CrMo5, 16CrMoV4, A 333 Grade P 11, P 12, G-17CrMo5-5, 22Mo4, G-22CrMo 5-4, 42CrMo4.
- Heat treatable steels up to 780 MPa tensile strength
- · Case hardening and nitriding steels

Applications:

- Pressure vessel & boiler industry
- Pipelines
- Repair shops
- Heat exchanger industry
- Steel mills
- · Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 19 CrMo	-	Hilcord 61M	SG CrMo1	H100CrMo1/HW530	-

Chemical composition, wt.% weld metal - typical:

		, ,									
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,00	0,60	≤ 0,025	≤ 0,025	1,20		0,50				

Note: AWS spec. ER80S-B2 Mn 0,40-0,70%

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
Stress relieved	≥ 460	<u>≥</u> 560	≥ 26	+20°C ≥ 47

Notes: stress relieved condition 680°C / 2 h. - preheat, interpass and PWHT are essential for obtaining properties as indicated. For welding 13CrMo4-5 preheat 200-250°C, PWHT 660-700°C min. 1/2 h., cool down slowly

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
0,8	BS300	15	80-180	17-20
1,0	BS300	15	120-240	18-26
1,2	BS300	15	160-260	20-29

AWS A5.28: ER 90S-G (nearest ER 90S-B3)

EN 12070: G CrMo 2 Si

Wire type:

MAG Soid wire

Current:

Welding positions:

Approvals:

Shielding gas:

M21-M33 = ArCO₂-ArCO₂O₂

SG CrMo2 is our solid wire for MAG welding low alloyed fine grain and creep resisting steels like 10CrMo9.10 up to a maximum operating temperature of 600°C. Typical applications include the construction of pressure vessels, boilers and pipes.

Base materials to be welded:

- Boiler steel 10CrMo9.10, A335 Grade P22, 10CrSiMoV7 (1.8075), G17CrMo9.10 (1.7379)
- Heat treatable steels up to 980 MPa tensile strength
- Case hardening and nitriding steels

Applications:

- · Pressure vessel & boiler industry
- Pipelines
- Repair shops
- · Heat exchanger industry
- · Steel mills
- Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 20 CrMo	-	Hilcord 62M	SG CrMo2	H60CrMo2/HW530	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,08	1,00	0,60	≤ 0,025	≤ 0,025	2,50		1,00				

Note: AWS spec. ER90S-B3 Mn 0,40-0,70%

Mechanical roperties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
Stress relieved	≥ 400	<u>≥</u> 500	≥ 22	+20°C ≥ 47

Notes: stress relieved condition 730°C / 2 h. - preheat, interpass and PWHT are essential for obtaining properties as indicated. For welding 10CrMo9.10 preheat 200-300°C, PWHT 660-730°C min. 1/2 h., cool down slowly

Dia. mm.	Length mm.	Weight / package kg.	Current A	Voltage V
0,8	BS300	15	80-180	17-20
1,0	BS300	15	120-240	18-26
1,2	BS300	15	160-260	20-29

AWS A5.28: ER 80 S Ni 1

EN 440: G 46 6 M G3 Ni 1

Wire type: MAG Solid wire Current:

Welding positions:

1_,

Approvals:

Shielding gas: M21 = ArCO₂

SG Ni 1 is our solid wire for MAG welding low alloyed structural steels having a nominal yield strength up to 550 MPa used in applications where good sub-zero toughness is required down to -60°C. Typical applications include heavy machinery, petrochemical equipment and offshore constructions.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355K2G4, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH
- Fine grain steel SP355NL2-S500QL1, S275N-S420ML
- Pipe steel P235T1-P355N, L360-L485MB/NB, St37.0-St52.4, St45.8, X52-X70
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basic 70	ı	Hilcord 43	Fer SG Ni1	H100Ni1/HW530	

Chemical composition, wt.% weld metal - typical:

		, , ,									
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,00	0,60	≤ 0,025	≤ 0,025		0,90					

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J	
As welded	≥ 480	<u>≥</u> 580	≥ 24	-60°C ≥ 60	

Note: properties under M21 = ArCO₂ gas shielding

Dia.	Dia. Spooltype		Current	Voltage	
mm.		spool kg.	Α	٧	
1,2	BS300	15	160-260	20-29	

AWS A5.28: ER 80 S Ni 2

EN 440: G 46 6 M G2 Ni 2

Wire type: MAG Solid wire Current:

Welding positions

Approvals:

Shielding gas: M21 = ArCO₂

SG Ni2,5 is our Ni-alloyed solid wire for MAG welding low alloyed cryogenic steels used in applications where excellent sub-zero toughness is required down to -80°C. Typical applications include heavy machinery, petrochemical equipment and offshore constructions.

Base materials to be welded:

 Fine grain steels S275NL2-S500QL1, StE315-StE500 12Ni14 G1/G2, X 12 Ni 5, 13MnNi 6-3

Applications:

- · Shipyards/offshore
- · Construction works
- Bridge & road construction
- Pressure vessel & boiler industry
- Pipelines

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	Fer SG Ni 2,5	H100Ni2/HW580	=

Chemical composition, wt.% weld metal - typical:

ſ	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
ſ	0,10	1,10	0,50	≤ 0,025	≤ 0,025		2,50					

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values	
	MPa	MPa	Lo=5d - %	ISO-V J	
As welded	≥ 510	<u>></u> 620	≥ 22	-70°C ≥ 60	
Stress relieved	≥ 480	≥ 560	≥ 24	-80°C ≥ 55	

Note: stress relieved condition 680°C / 2 h.

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	A	V
1,2	BS300	15	160-260	20-29

Hilcord Cor-Ten

Cored wires - low alloyed steel - high strength

AWS A5.29: E 70 T5-G EN 758: T 42 4 1Ni B H5

Wire type:

Basic cored wire

Current:

=+

Welding positions:

<u>+</u>

Approvals:

Shielding gas: M21 = ArCO₂

Hilcord Cor-Ten is our seamless copper coated basic flux cored wire for MAG welding low alloyed weather resistant steels like Cor-Ten A, B, Patinax and similar CuNi-alloyed steels. Typical applications include steel structures, bridge constructions, railwaycars. Hilcord Cor-Ten is a guaranteed low hydrogen content wire ($H_{\text{DM}} < 5$ ml/100 gr. deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

 Weather resistant steel S235J2G3Cu-S355J2G3Cu S235JRW-S355JRW, S235J2W-S355J2W
 Corten, Patinax, Alcodur 50, Koralpin 52, Domex

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Railway wagons
- Container frames

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	SG Cor-Ten	-	Fer Cor-Ten	Cor-Ten / HW530	-

Chemical composition, wt.% weld metal - typical:

Chomba Composition, 1117, 11014 motal typican												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,05	1,20	0,35	≤ 0,025	≤ 0,025		1,20		0,50			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values		
	MPa	MPa	Lo=5d - %	ISO-V J		
As welded	≥ 470	≥ 540	≥ 24	-40°C ≥ 60		

Note: properties under M21 = ArCO₂ gas shielding

- 4	<u> </u>				
	Dia.	Spooltype	Weight /	Current	Voltage
	mm.		spool kg.	Α	V
	1.2	BS300	16	160-260	18-26

Hilcord 59M

AWS A5.28: E 110C-G (to be replaced by E110C-K4)

EN 12535: T 69 4 Mn2NiCrMo M M 2 H5

Wire type:

Metal cored wire

Current:

=+

Welding positions:

Approvals:

Shielding gas: M21 = ArCO₂

Hilcord 59M is our seamless copper coated metal cored wire for MAG welding low alloyed high strength steels having a nominal yield strength of 690 MPa such as: HY 80, N-A-XTRA 63, N-A-XTRA 70, Weldox 700, Grade 100, USS T-1 and similar HSLA steel grades. Typical applications include crane fabrication, automotive and transport industries. A low heat input is recommended to obtain the mechanical properties desired. Hilcord 59M is a guaranteed low hydrogen content wire ($H_{DM} < 5 \, \text{ml}/100 \, \text{g}$ deposit weld metal).

Base materials to be welded:

- Fine grain steel S620QL1, S690QL1, S700MC
 N-A-XTRA 63-70, TStE620-TStE690, T1, Weldox 700
- Pipe steel L480-L550, API 5L X65-X80

Applications:

- · Construction works
- Pipelines
- Transport & lifting industry

Equivalent product in alternative welding process:

	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
ſ	-	K 80	-	K 80 (TIG)	H150NiCrMo1 / HW580	-

Chemical composition, wt.% weld metal - typical:

-												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,06	1,50	0,65	≤ 0,020	≤ 0,020	0,40	2,20	0,50				

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values	
	MPa	MPa	Lo=5d - %	ISO-V J	
As welded	≥ 690	≥ 760	≥ 17	-51°C ≥ 40	

Note: properties under M21 = ArCO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
1,2	B300	16	120-350	17-32

Cored wires - low alloyed steel - creep resisting

AWS A5.28: E 80C-G

EN 758: T 46 2 Mo M M 1 H5

EN 12071: T Mo M M 1 H5

Wire type:

Metal cored wire

Current:

=+

Welding positions:

Approvals: TüV Shielding gas: M21 = ArCO₂

Hilcord 60M is our seamless copper coated metal cored wire for welding low alloyed fine grain and creep resisting steels like 16Mo3 up to a maximum operating temperature of 500° C. Typical applications include the construction of pressure vessels, boilers and pipes. Hilcord 60M is a guaranteed low hydrogen content wire ($H_{\text{DM}} < 5 \text{ ml/}100 \text{ gr.}$ deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

- Boiler steel P235GH-P310GH, 16Mo3, 17Mo3, 16Mo5, 14Mo6, 15NiCuMoNb5, 17MnMoV64, A355 Grade P1
- Fine grain steel S275N-S500N, P355NH-P460NH, S355NL-S500NL
- Pipe steel L320NB-L415NB, L360MB-L415MB API 5L X52-X70

Applications:

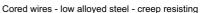
- Pressure vessel & boiler industry
- Pipelines
- Repair shops
- · Heat exchanger industry
- Steel mills
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 12 Mo	SG Mo	-	Fer SG Mo	H100Mo / HW 530	Fer G 4

Chemical composition, wt.% weld metal - typical:

Chemical Composition, Wart Wold Metal Typical.												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,06	1,00	0,35	≤ 0.015	≤ 0.015			0,50				


Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 490	≥ 560	≥ 22	-20°C ≥ 50

Note: properties under M21 = ArCO₂ gas shielding

- aonaging and	a wording data.				
Dia.	Spooltype	Weight /	Current	Voltage	
mm.		spool kg.	Α	V	
1.2	B300	16	120-300	17-32	

AWS A5.28: E 80C-G

EN 12071: T CrMo1 M M 2 H5

Wire type:

Metal cored wire

Current:

=+

Welding positions:

Approvals: TüV Shielding gas: M21 = ArCO₂

Hilcord 61M is our seamless copper coated metal cored wire for MAG welding low alloyed fine grain and creep resisting steels like 13CrMo4 5 up to a maximum operating temperature of 550°C. Typical applications include the construction of pressure vessels, boilers and pipes. Hilcord 61M is a guaranteed low hydrogen content wire ($H_{DM} < 5$ ml/100 gr. deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

- Boiler steel 13CrMo4-5, 15CrMo5, 16CrMoV4, A 333 Grade P 11, P 12, G-17CrMo5-5, 22Mo4, G-22CrMo 5-4, 42CrMo4.
- Heat treatable steels up to 780 MPa tensile strength
- Case hardening and nitriding steels

Applications:

- · Pressure vessel & boiler industry
- Pipelines
- · Repair shops
- Heat exchanger industry
- Steel mills
- Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

_quu.o p. o u.		iroidiiig processi			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 19 CrMo	SG CrMo1	-	Fer SG CrMo1	H 100CrMo1/HW 580	-

Chemical composition, wt.% weld metal – typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,06	1,00	0,35	≤ 0,015	≤ 0,015	1,00		0,50				

Mechanical properties, weld metal - typical:

	Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
Г	Stress relieved	≥ 470	≥ 560	≥ 22	-20°C ≥ 50

Notes: stress relieved condition 680° C / 2 h. - preheat, interpass and PWHT are essential for obtaining properties as indicated. For welding 13CrMo4-5 preheat 200-250 $^{\circ}$ C, PWHT 660-700 $^{\circ}$ C min. 1/2 h., cool down slowly

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	A	V
1,2	B300	16	120-300	17-32

AWS A5.28: E 90C-G

EN 12071: T CrMo2 M M 2 H5

Wire type: Metal cored wire Current:

Welding positions:

Approvals: TüV Shielding gas: M21 = ArCO₂

Hilcord 62M is our seamless copper coated metal cored wire for MAG welding low alloyed fine grain and creep resisting steels like 10CrMo9.10 up to a maximum operating temperature of 600° C. Typical applications include the construction of pressure vessels, boilers and pipes. Hilcord 62M is a guaranteed low hydrogen content wire (H_{DM} < 5 ml/100 gr. deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

- Boiler steel 10CrMo9.10, A335 Grade P22, 10CrSiMoV7 (1.8075), G17CrMo9.10 (1.7379)
- · Heat treatable steels up to 980 MPa tensile strength
- · Case hardening and nitriding steels

Applications:

- Pressure vessel & boiler industry
- Pipelines
- Repair shops
- Heat exchanger industry
- Steel mills
- Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

-	Equivalent prou	act iii aiteiliative	wording process			
	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
	B 20 CrMo	SG CrMo2	-	Fer SG CrMo2	H 60CrMo2/HW 580	-

Chemical composition, wt.% weld metal - typical:

Chemical Composition, Ways Word Metal Cypican												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,07	0,90	0,35	< 0.015	< 0.015	2,20		1,00				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
Stress relieved	≥ 540	≥ 620	≥ 18	+20°C ≥ 80

Notes: Stress relieved condition 710°C / 1 h. - preheat, interpass and PWHT are essential for obtaining properties as indicated. For welding 10CrMo9.10 preheat 200-300°C, PWHT 660-730°C min. 1/2 h., cool down slowly

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V	
1,2	B300	16	120-350	17-32	
1,4	B300	16	170-380	20-32	

AWS A5.29: E 81 T1-Ni1 M H4

EN 758: T 50 5 1 Ni P M 1 H5

Wire type:

Rutile cored wire

Current:

=+

Welding positions:

Approvals: LR, TüV Shielding gas: M21 = ArCO₂

Hilcord 43 is our seamless copper coated rutile flux cored wire for all position MAG welding of low alloyed structural steels having a nominal yield strength up to 550 MPa used in applications where good sub-zero toughness is required down to -50°C. Typical applications include open butt-joints using non-fusible backing materials. Hilcord 43 is a guaranteed low hydrogen content wire (H_{DM} < 5 ml/100 g deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355K2G4, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH
- Fine grain steel SP355NL2-S500QL1, S275N-S420ML
- Pipe steel P235T1-P355N, L360-L485MB/NB, St37.0-St52.4, St45.8, X52-X70
- Cast steel GP240R, GS45

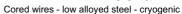
Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry Repair Shops

Equivalent product in alternative welding process:

Equivalent product in alter	equivalent product in alternative welang process.						
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing		
Basic 70	SG Ni 1		-	H100 Ni 1 / HW 530	-		

Chemical composition, wt.% weld metal - typical:


-			, ,									
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,06	1,40	0,40	≤ 0,015	≤ 0,012		0,95					

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 550	≥ 620	≥ 22	-50°C ≥ 50

Notes: properties under M21 = ArCO₂ gas shielding

	Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
1	1,2	BS300	16	120-300	20-32

AWS A5.29: E 81 T1-Ni1

EN 758: T 50 6 1 Ni P M 1 H5

Wire type: Rutile cored wire Current:

Welding positions:

Approvals: LR Shielding gas: M21 = ArCO₂

Hilcord 44 is our rutile flux cored wire for all position MAG welding of low alloyed structural steels having a nominal yield strength up to 550 MPa used in applications where good sub-zero toughness is required down to -60°C. Typical applications include heavy machinery, petrochemical equipment and offshore constructions.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355K2G4, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH
- Fine grain steel SP355NL2-S500QL1, S275N-S420ML
- Pipe steel P235T1-P355N, L360-L485MB/NB, St37.0-St52.4, St45.8, X52-X70
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basic 70	SG Ni 1	ı	-	H100 Ni 1 / HW 530	ı

Chemical composition, wt.% weld metal - typical:

			,	,								
Ī	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
ſ	0,06	1,20	0,40	≤ 0,025	≤ 0,025		1,0					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 500	≥ 560	≥ 22	-40°C ≥ 70 J (-90J) -60°C ≥ 47 J (-60J)

Note: properties under M21 = ArCO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
1,2	B200	5	160-300	20-32
1,2	B300	16	160-300	20-32

TIG rods - low alloyed steel - high strength

AWS A5.28: ER 80 S-G

EN 1668: W 46 2 W 0

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding: 11 = Pure Ar

Fer Cor-Ten is our solid wire for TIG welding low alloyed weather resistant steels like Cor-Ten A, B, Patinax and similar CuNi-alloyed steels. Typical applications include steel structures, bridge constructions, railwaycars. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

 Weather resistant steel S235J2G3Cu-S355J2G3Cu S235JRW-S355JRW, S235J2W-S355J2W
 Corten, Patinax, Alcodur 50, Koralpin 52, Domex

Applications:

- Shipyards/offshore
- Construction works
- · Bridge & road constructions
- · Rail wagons
- Container frames

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	SG Cor-Ten	Hilcord Cor-Ten	-	Cor-Ten / HW530	-

Chemical composition, wt.% weld metal – typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,10	1,50	0,80	≤ 0,025	≤ 0,025		0,90		0,40			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 460	<u>≥</u> 550	≥ 24	-20°C ≥ 80

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5

AWS A5.28: ER 110 S-G

Wire type:

TIG Solid wire

Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

K 80 is our solid wire for TIG welding low alloyed high strength steels having a nominal yield strength of 690 MPa such as: HY 80, N-A-XTRA 63, N-A-XTRA 70, Weldox 700, Grade 100, USS T-1 and similar HSLA steel grades. Typical applications include crane fabrication, automotive and transport industries. A low heat input is recommended to obtain the mechanical properties desired. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Fine grain steel S620QL1, S690QL1, S700MC
 N-A-XTRA 63-70, TStE620-TStE690, T1, Weldox 700
- Pipe steel L480-L550, API 5L X65-X80

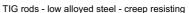
Applications:

- Construction works
- Pipelines
- · Transport & lifting industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
=.	K80	Hilcord 59M	-	H150NiCrMo1/HW580	-

Chemical composition, wt.% weld metal - typical:


1	O	Mn	Si	S	P	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,10	1,60	0,50	≤ 0,025	≤ 0,025	0,30	1,40	0,30	< 0,25		0,10	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 690	<u>></u> 750	≥ 17	-40°C ≥ 50

Note: properties under pure Argon gas shielding

· actuaging aut	· acraging aata.								
Dia.	Length	Weight /							
mm.	mm.	package kg.							
2,5	1000	5							

AWS A5.28: ER70S-A1

EN 1668: W 46 2 W 2 Mo

EN 12070: W Mo Si

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Fer SG Mo is solid wire for TIG welding low alloyed fine grain and creep resisting steels like 16Mo3 up to a maximum operating temperature of 500°C. Typical applications include the construction of pressure vessels, boilers and pipes. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Boiler steel P235GH-P310GH, 16Mo3, 17Mo3, 16Mo5, 14Mo6, 15NiCuMoNb5, 17MnMoV64, A355 Grade P1
- Fine grain steel S275N-S500N, P355NH-P460NH, S355NL-S500NL
- Pipe steel L320NB-L415NB, L360MB-L415MB API 5L X52-X70

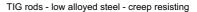
Applications:

- · Pressure vessel & boiler industry
- Pipelines
- Repair shops
- · Heat exchanger industry
- Steel mills
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 12 Mo	SG Mo	Hilcord 60M	-	H100Mo / HW530	Fer G-4

Chemical composition, wt.% weld metal - typical:


		-			_						
С	Mn	Si	S	P	Cr	Ni	Мо	Cu	Nb	V	Al
0,10	1,10	0,60	≤ 0,025	≤ 0,025			0,5				

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 480	570	≥ 22	-20°C ≥ 60

Note: properties under pure Argon gas shielding

Dia.	Length	Weight /		
mm.	mm.	package kg.		
1,6	1000	5		
2,0	1000	5		
2,4	1000	5		
3,0	1000	5		

AWS A5.28: ER 80S-G (nearest ER 80S-B2)

EN 12070: W Cr Mo 1 Si

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals: TüV Shielding gas: 11 = Pure Ar

Fer SG CrMo1 is our solid wire for TIG welding low alloyed fine grain and creep resisting steels like 13CrMo4 5 up to a maximum operating temperature of 550°C. Typical applications include the construction of pressure vessels, boilers and pipes. To be used in combination with tungsten electrodes type Wolfram WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Boiler steel 13CrMo4-5, 15CrMo5, 16CrMoV4, A 333 Grade P 11, P 12, G-17CrMo5-5, 22Mo4, G-22CrMo 5-4, 42CrMo4.
- Heat treatable steels up to 780 MPa tensile strength
- · Case hardening and nitriding steels

Applications:

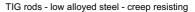
- · Pressure vessel & boiler industry
- Pipelines
- Repair shops
- Heat exchanger industry
- Steel mills
- Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 19 CrMo	SG CrMo1	Hilcord 61M	-	H100CrMo1/HW580	-

Chemical composition, wt.% weld metal - typical:

 		, ,									
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,00	0,60	≤ 0,025	≤ 0,025	1,20		0,50				


Note: AWS spec. ER 80S-B2 Mn 0,40-0,70%

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 460	<u>≥</u> 560	≥ 22	+20°C ≥ 100

Note: properties under pure Argon gas shielding

Dia.	Length	Weight /		
mm.	mm.	package kg.		
1,6	1000	5		
2,0	1000	5		
2,4	1000	5		
3,0	1000	5		

AWS A5.28: ER 90S-G (nearest ER 90S-B3)

EN 12070: W CrMo 2 Si

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals: TüV Shielding gas: 11, Pure Ar

Fer SG CrMo2 is our solid wire for TIG welding low alloyed fine grain and creep resisting steels like 10CrMo9.10 up to a maximum operating temperature of 600°C. Typical applications include the construction of pressure vessels, boilers and pipes. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Boiler steel 10CrMo9.10, A335 Grade P22, 10CrSiMoV7 (1.8075), G17CrMo9.10 (1.7379)
- Heat treatable steels up to 980 MPa tensile strength
- · Case hardening and nitriding steels

Applications:

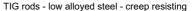
- · Pressure vessel & boiler industry
- Pipelines
- · Repair shops
- · Heat exchanger industry
- Steel mills
- · Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 20 CrMo	SG CrMo2	Hilcord 62M	-	H60CrMo2/HW580	-

Chemical composition, wt.% weld metal - typical:

 		, ,									
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,08	1,00	0,60	≤ 0,025	≤ 0,025	2,50		1,00				


Note: AWS spec. ER 90S-B3 Mn 0,40-0,70%

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 460	<u>></u> 570	≥ 20	+20°C ≥ 80

Note: properties under pure Argon gas shielding

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5

AWS A5.28: ER 80 S B 6

former spec. ER 502 EN 12070 : W CrMo 5 Si

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Fer SG CrMo5 is our solid wire for TIG welding low alloyed fine grain and creep resisting steels like 12CrMo19-5 up to a maximum operating temperature of 600°C. Typical applications include the construction of pressure vessels, boilers and pipes. Fer SG CrMo5 is also used for repair welding forging dies. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Boiler steel 12CrMo19.5, A335 Grade P5, C5 X12CrMo5 (1.7362), G-X12CrMo5 (1.7363)
- Heat treatable steels up to 1180 MPa tensile strength
- · Case hardening and nitriding steels

Applications:

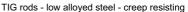
- · Pressure vessel & boiler industry
- Pipelines
- · Repair shops
- · Heat exchanger industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW wire	Gas welding / brazing
-	-	-	-	-	-

Chemical composition, wt.% weld metal – typical:

1	C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,05	0,50	0,40	≤ 0,025	≤ 0,025	5,70		0,60				


Note:

Mechanical properties, weld metal - typical:

	Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
ĺ	As welded	≥ 500	<u>≥</u> 630	≥ 20	+20°C ≥ 60

Note: properties under pure Argon gas shielding

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	914 / 1000	5
2,0	914 / 1000	5
2,4	914 / 1000	5

AWS A5.28: ER 80 S B 8

former spec. ER 505 EN 12070 : W CrMo 9 Si

Wire type: Current: Welding positions:

Approvals: Shielding gas: - I1 = Pure Ar

Fer SG CrMo9 is our solid wire for TIG welding low alloyed fine grain and creep resisting steels like A335 Gr. P9 up to a maximum operating temperature of 600°C. Typical applications include the construction of pressure vessels, boilers and pipes. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

 Boiler steel X-12CrMo9 1, A335 Grade P9 G-X12CrMo101 (1.7389)

Applications:

- · Pressure vessel & boiler industry
- Pipelines
- · Repair shops
- Heat exchanger industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW wire	Gas welding / brazing
-	-	-	-	-	-

Chemical composition, wt.% weld metal – typical:


C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,08	0,55	0,45	≤ 0,025	≤ 0,025	9,00		1,00				

Mechanical properties, weld metal - typical:

Condit	ion	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As weld	ded	≥ 500	<u>></u> 650	≥ 18	+20°C ≥ 60

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
1,6	914 / 1000	5
2,0	914 / 1000	5
2,4	914 / 1000	5

AWS A5.28: ER 80 S Ni 1

EN 1668: W 46 6 W 3 Ni 1

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Fer SG Ni1 is our solid wire for TIG welding low alloyed structural steel having a nominal yield strength up to 550 MPa used in applications where good sub-zero toughness is required down to -60°C. Typical applications include heavy machinery, petrochemical equipment and offshore constructions. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355K2G4, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH
- Fine grain steel SP355NL2-S500QL1, S275N-S420ML
- Pipe steel P235T1-P355N, L360-L485MB/NB, St37.0-St52.4, St45.8, X52-X70
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- · Construction works
- Bridge & road constructions

Pressure vessel & boiler industry

Repair Shops

Equivalent product in alternative welding process:

=quiraioiit produ	=quiralent product in alternative from g process.						
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing		
Basic 70	SG Ni1	Hilcord 43	-	H100Ni1/HW530	-		

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,10	1,00	0,60	≤ 0,025	≤ 0,025		0,90					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 480	<u>></u> 580	≥ 24	-60°C ≥ 60

Note: properties under pure Argon gas shielding

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5

AWS A5.28: ER 80 S Ni 2

EN 1668: W 46 6 W 2 Ni 2

Wire type:

TIG Solid wire

Welding Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Fer SG Ni2,5 is our Ni-alloyed solid wire for TIG welding low alloyed cryogenic steels under mixed gas shielding used in applications where excellent sub-zero toughness is required down to -80°C. Typical applications include heavy machinery, petrochemical equipment and offshore constructions. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

 Fine grain steels S275NL2-S500QL1, StE315-StE500 12Ni14 G1/G2, X 12 Ni 5, 13MnNi 6-3

Applications:

- · Shipyards/offshore
- Construction works
- Bridge & road construction
- Pressure vessel & boiler industry
- Pipelines

Equivalent product in alternative welding process:

	-quiralent product in alternative treating process.							
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing			
-	SG Ni2,5	-	-	H100Ni2/HW580	-			

Chemical composition, wt.% weld metal - typical:

Γ	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
	0,10	1,10	0,50	≤ 0,025	≤ 0,025		2,50					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 510	<u>></u> 620	≥ 22	-80°C ≥ 50

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5

AWS A5.2: R 60-G EN 12536: O IV

Wire type: OAW Solid wire Welding positions:

Approvals: TüV Shielding gas: Oxy-acetylene

Fer G 4 is our copper coated rod with 0,5 Mo content for oxy-acetylene gas welding fine grain and creep resistant Mo steels like 16Mo3. Very smoothly flowing wire with no loss due to spatter. Approved for working temperatures up to 500°C. Also available as non copper coated rod.

Base materials to be welded:

- Structural steel S185-S355J2, St.33-St52.3, St50.2
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4 16Mo3, 15Mo3
- Fine grain steel S275N-S500N, P355NH-P460NH, S355NL-S500NL
- Pipe steel P235T1-P355N, L210-L360MB, St.37.0-St.52.4, St 45.8, X42-X52, StE210.7-StE360.7TM

Applications:

- Construction works
- · Pressure vessel & boiler industry
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 12 Mo	SG Mo	Hilcord 60M	Fer SG Mo	H100Mo / HW530	-

Chemical composition, wt.% weld metal – typical:

1	C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,11	1,10	0,20	≤ 0,030	≤ 0,030			0,50				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 350	≥ 450	≥ 22	+20°C ≥ 60

Note: properties under oxy-acetylene gas

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5
4,0	1000	5

AWS A5.17: EM 12

EN 756: S 2

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

HW 530: ABS, BV, CL, DNV, GL, LR, TüV

HW 580: BV, CL, DNV, LR

H 100 is our solid wire for submerged arc welding of unalloyed and low alloyed structural steels in combination with Hilcoweld fluxes HW 430, HW 530, HW 580. H 100 is the ideal choice for shipbuilding, general constructions and pressure vessel industries.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- · Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basic Directa	K 60	Hilcord 51	Fer SG 2	-	Fer G 2

Chemical composition wire, wt.%:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,00	0,10	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa		ength	Tens	Tensile strength MPa		Elongation Lo=5d - %		Impact Values ISO-V J			
In combination with flux	HW430	HW530	HW580	HW430	HW530	HW580	HW430	HW530	HW580	HW430	HW530	HW580
As welded	<u>></u> 400	≥ 400	≥ 510	<u>></u> 520	≥ 520	≥ 600	<u>></u> 25	≥ 26	≥ 26	-20°C 27	-40°C 50	-40°C 70

Dia. mm.	Spooltype	Weight / spool kg.
2,0	B415	25
2,5	B415	25
3,0	B415	25
4,0	B415	25

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

H 150 is our manganese-alloyed wire for submerged arc welding of low alloyed structural and high tensile steels in combination with Hilcoweld fluxes HW 530, HW 580. Applications include general constructions, pressure vessel industries, boiler works and offshore constructions.

Base materials to be welded:

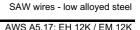
- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- · Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basic Directa	K 60	Hilcord 51	Fer SG 3	-	Fer G 2


Chemical composition, wt.% weld metal - typical:

 		,	,								
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,12	1,50	0,10	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa		Tensile strength MPa		Elongation Lo=5d - %		Impact Values ISO-V J	
In combination with flux	HW 530	HW 580	HW 530	HW 580	HW 530	HW 580	HW 530	HW 580
As welded	<u>></u> 460	<u>></u> 480	<u>></u> 530	<u>></u> 550	≥ 28	≥ 26	-20°C ≥ 80	-20°C ≥ 150

Dia. mm.	Spooltype	Weight / spool kg.
2,5	B415	25
3,2	B415	25
4,0	B415	25

EN 756: S 3 Si

Wire type: SAW Solid wire

Approvals in combination with flux:

H 150 Si is our silicon-manganese alloyed wire for submerged arc welding of low alloyed and high tensile steels in combination with Hilcoweld flux HW 580. Applications include general constructions, pressure vessel industries, boiler works and offshore constructions.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	OAW
Basic Directa	K 60	Hilcord 51	Fer SG 3	-	Fer G 2

Chemical composition, wt.% weld metal – typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,70	0,30	< 0,015	< 0,015							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
In combination with flux	HW 580	HW 580	HW 580	HW 580
As welded	<u>≥</u> 460	<u>></u> 550	≥ 28	-60° ≥ 95

Notes:

Dia.	Spooltype	Weight /
mm.		spool kg.
2,5	B415	25
3,2	B415	25
4,0	B415	25

AWS A5.17: EH 14

EN 756: S 4

Wire type: SAW Solid wire

flux HW 580. Applications include general constructions, pressure vessel industries, boiler works.

Approvals in combination with flux:

H 200 is our manganese alloyed wire for submerged arc welding of low alloyed structural steels used in applications demanding good impact values even at low temperatures. Wire is used in combination with Hilcoweld

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
 Fine grain steel P275N-P355NL2, S275N-S420N,
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- · Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
 - Pressure vessel & boiler industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basic Directa	K 60	Hilcord 51	Fer SG 3	-	Fer G 2

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	2,00	0,10	≤ 0,025	≤ 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
In combination with	HW 580	HW 580	HW 580	HW 580
flux				
As welded	<u>></u> 510	<u>≥</u> 600	≥ 26	-60° <u>≥</u> 50
	<u>≥</u> 510	<u>≥</u> 600	≥ 26	-60° <u>≥</u> 50

Dia. mm.	Spooltype	Weight / spool kg.
2,5	B415	25
3,2	B415	25
4,0	B415	25

AWS A5.23: EG

EN 756: S 0

Wire type: SAW Solid wire

Approvals in combination with flux:

HW 530: TüV

Cor-Ten is our solid wire for submerged arc welding low alloyed weather resistant steels like Cor-Ten A, B, Patinax and similar CuNi-alloyed steels in combination with Hilcoweld flux HW 530. Typical applications include steel structures, bridge constructions, railwaycars.

Base materials to be welded:

 Weather resistant steel S235J2G3Cu-S355J2G3Cu S235JRW-S355JRW, S235J2W-S355J2W Corten, Patinax, Alcodur 50, Koralpin 52, Domex

Applications:

- · Shipyards/offshore
- · Construction works
- Bridge & road constructions
- · Rail wagons
- Container frames

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	SG Cor-Ten	Hilcord Cor-Ten	Fer Cor-Ten	-	-

Chemical composition wire, wt.%:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,00	0,30				0,90	0,15	0,50			

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
In combination with flux	HW 530	HW 530	HW 530	HW 530
As welded	≥ 460	≥ 540	≥ 24	-20°C ≥ 50

Dia.	Spooltype	Weight /
mm.		spool kg.
2,5	B415	25 kilo
3,0	B415	25 kilo
4.0	B415	25 kilo

H 150NiCrMo1

AWS A5.23: EG

EN 756: S0

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

H 150 NiCrMo1 is our solid wire for submerged arc welding low alloyed high strength steels having a nominal yield strength of 690 MPa such as: HY 80, N-A-XTRA 63, N-A-XTRA 70, Weldox 700, Grade 100, USS T-1 and similar HSLA steel grades. To be used in combination with Hilcoweld flux HW 580. Typical applications include crane fabrication, automotive and transport industries. A low heat input is recommended to obtain the mechanical properties desired.

Base materials to be welded:

- Fine grain steel S620QL1, S690QL1, S700MC
 N-A-XTRA 63-70, TStE620-TStE690, T1, Weldox 700
- Pipe steel L480-L550, API 5L X65-X80

Applications:

- · Construction works
- Pipelines
- Transport & lifting industry

Equivalent product in alternative welding process:

		ranning process			
SMAW	GMAW	FCAW	GTAW	SAW	OAW
-	K 80	Hilcord 59M	K 80 (TIG)	-	-

Chemical composition wire, wt.%:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,14	1,70	0,10	≤ 0,020	≤ 0,020	0,35	2,10	0,60				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
In combination with flux	HW 580	HW 580	HW 580	HW 580
As welded	≥ 690	≥ 760	≥ 18	-40°C ≥ 47

Dia. mm.	Spooltype	Weight / spool kg.
2,5	B415	25 kilo
3,0	B415	25 kilo
4,0	B415	25 kilo

AWS A5.23: EA 2

EN 756: S2 Mo EN 12070: S Mo

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

HW 580: CL, LR

H 100 Mo is solid wire for submerged arc welding of low alloyed fine grain and creep resistant steels like 16Mo3 up to a maximum operating temperature of 500°C. To be used in combination with Hilcoweld fluxes HW530, HW 580. Typical applications include the construction of pressure vessels, boilers and pipes.

Base materials to be welded:

- Boiler steel P235GH-P310GH, 16Mo3, 17Mo3, 16Mo5, 14Mo6, 15NiCuMoNb5, 17MnMoV64, A355 Grade P1
- Fine grain steel S275N-S500N, P355NH-P460NH, S355NL-S500NL
- Pipe steel L320NB-L415NB, L360MB-L415MB API 5L X52-X70

Applications:

- · Pressure vessel & boiler industry
- Pipelines
- Repair shops
- · Heat exchanger industry
- Steel mills
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 12 Mo	SG Mo	Hilcord 60M	Fer SG Mo	-	Fer G 4

Chemical composition wire, wt.%:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,00	0,20	≤ 0,020	≤ 0,020			0,50				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa			Tensile strength MPa		Elongation Lo=5d - %		Impact Values ISO-V J	
In combination with flux	HW 530	HW 580	HW 530	HW 580	HW 530	HW 580	HW 530	HW 580	
As welded	≥ 490	≥ 560	≥ 590	≥ 640	≥ 24	≥ 24	-20°C 65	-40°C 50	

Dia.	Spooltype	Weight /
mm.		spool kg.
2,5	B415	25 kilo
3,0	B415	25 kilo
4,0	B415	25 kilo

H 100CrMo1

AWS A5.23: EB 2

EN 12070: S CrMo1

Wire type: SAW Solid wire Welding Current:

Welding positions:

-

Approvals in combination with flux:

H 100CrMo1 is our solid wire for submerged arc welding low alloyed fine grain and creep resisting steels like 13CrMo4 5 up to a maximum operating temperature of 550°C. To be used in combination with flux HW 580. Typical applications include the construction of pressure vessels, boilers and pipes.

Base materials to be welded:

- Boiler steel 13CrMo4-5, 15CrMo5, 16CrMoV4, A 333 Grade P 11, P 12, G-17CrMo5-5, 22Mo4, G-22CrMo 5-4, 42CrMo4.
- Heat treatable steels up to 780 MPa tensile strength
- Case hardening and nitriding steels

Applications:

- · Pressure vessel & boiler industry
- Pipelines
- Repair shops
- Heat exchanger industry
- Steel mills
- Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

=quiraionit produc	-quitaioni product in alternative moraling processi							
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing			
B 19 CrMo	SG CrMo1	Hilcord 61M	Fer SG CrMo1	-	-			

Chemical composition wire, wt.%:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,12	0,90	0,20	≤ 0,020	≤ 0,020	1,10		0,50				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
In combination with flux	HW 580	HW 580	HW 580	HW 580
As welded	<u>≥</u> 500	<u>≥</u> 600	<u>≥</u> 23	+20°C ≥ 120

Dia.	Spooltype	Weight /
mm.		spool kg.
2,5	B415	25 kilo
3,0	B415	25 kilo
4,0	B415	25 kilo

AWS A5.23: EB 3

EN 12070: S CrMo2

Wire type: SAW Solid wire

Welding positions:

→

Approvals in combination with flux:

-

H 60 CrMo2 is our solid wire for submerged arc welding low alloyed fine grain and creep resisting steels like 10CrMo9.10 up to a maximum operating temperature of 600°C. To be used in combination with Hilcoweld flux HW 580. Typical applications include the construction of pressure vessels, boilers and pipes.

Base materials to be welded:

- Boiler steel 10CrMo9.10, A335 Grade P22, 10CrSiMoV7 (1.8075), G17CrMo9.10 (1.7379)
- Heat treatable steels up to 980 MPa tensile strength
- · Case hardening and nitriding steels

Applications:

- · Pressure vessel & boiler industry
- Pipelines
- Repair shops
- Heat exchanger industry
- Steel mills
- · Petrochemical industry
- · Cement industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 20 CrMo	SG CrMo2	Hilcord 62M	Fer SG CrMo2	-	-

Chemical composition wire, wt.%:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,12	0,60	0,20	≤ 0,020	≤ 0,020	2,50		1,00				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
In combination with	HW 580	HW 580	HW 580	HW 580
flux				
As welded	≥ 500	<u>≥</u> 600	<u>≥</u> 23	+20°C ≥ 120

Dia. mm.	Spooltype	Weight / spool kg.
2,5	B415	25 kilo
3,0	B415	25 kilo
4,0	B415	25 kilo

AWS A5.23: E Ni 1 EN 756: S 2 Ni 1

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

HW 530: TüV

H 100 Ni 1 is our solid wire for submerged arc welding low alloyed structural steels having a nominal yield strength up to 550 Mpa. To be used in combination with Hilcoweld flux HW 530, HW 580. The wire is particularly used in applications where good sub-zero toughness is required down to -60°C. Typical applications include heavy machinery, petrochemical equipment and offshore constructions.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355K2G4, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH
- Fine grain steel SP355NL2-S500QL1, S275N-S420ML
- Pipe steel P235T1-P355N, L360-L485MB/NB, St37.0-St52.4, St45.8, X52-X70
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMA	٧	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basic	70	SG Ni1	Hilcord 43	Fer SG Ni1	ı	-

Chemical composition wire, wt.%:

С	Mn	Si	S	P	Cr	Ni	Мо	Cu	Nb	V	Al
0,12	1,10	0,20	≤ 0,025	≤ 0,025		0,95					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa		Tensile strength MPa		Elongation Lo=5d - %		Impact Values ISO-V J			
In combination with flux	HW 530	HW 580	HW 530	HW 580	HW 530	HW 580	HW 530	HW 580		
As welded	≥ 460	<u>></u> 510	<u>></u> 550	<u>></u> 590	≥ 27	≥ 26	-60°C ≥40	-60°C ≥50		

Dia.	Spooltype	Weight /	
mm.		spool kg.	
2,5	B415	25 kilo	
3,0	B415	25 kilo	
4,0	B415	25 kilo	

AWS A5.23: E Ni 2 EN 756: S 2 Ni 2

Wire type: SAW Solid wire Welding Current:

Welding positions:

→

Approvals in combination with flux:

H 100 Ni2 is our Ni-alloyed solid wire for submerged arc welding low alloyed cryogenic steels under mixed gas shielding. To be used in combination with Hilcoweld flux HW 580. The wire is particularly used in applications where excellent sub-zero toughness is required down to -80°C. Typical applications include heavy machinery, petrochemical equipment and offshore constructions.

Base materials to be welded:

 Fine grain steels S275NL2-S500QL1, StE315-StE500 12Ni14 G1/G2, X 12 Ni 5, 13MnNi 6-3

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road construction
- Pressure vessel & boiler industry
- Pipelines

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	SG Ni2,5	ı	Fer SG Ni2,5	ı	-

Chemical composition wire, wt.%:

C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,10	0,15				2,50					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
In combination with flux	HW 580	HW 580	HW 580	HW 580
As welded	≥ 480	≥ 580	≥ 26	-80°C ≥ 45

Dia. mm.	Spooltype	Weight / spool kg.
2,5	B415	25 kilo
3,0	B415	25 kilo
4,0	B415	25 kilo

EN 760: S A AB 1 67 AC H5

AWS A5.17: F7A4-EM12 / F7A2-~EM12K

AWS A5.23: F7A2-EG / F7A2-EA2 / F7AP6-ENi1

EN 756: S 42 3 AB S2 / S 46 2 AB S3 / S 46 2 AB S0 / S 46 2 AB S2Mo / S 46 6 AB S2Ni1

Flux type:

Agglomerated (semi) basic

Welding positions:

Approvals in combination with wire:

H 100: ABS, BV, CL, DNV, GL, LR, TüV

Cor-Ten: TüV H 100 Ni1: TüV

HW 530 is our agglomerated semi-basic flux for submerged arc welding low alloyed fine grain steels. HW 530 is suitable for single and multipass welding, for fillet welds and multi wire applications. The weld has an excellent appearance and the slag is self-releasing. The weld metal, produced in combination with corresponding wires, offers good mechanical properties also at low temperatures. The basicity index is 1,3 ca. (Boniszewski).

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P460NH, S275N-S500N, StE285-EstE460. StE285TM-EstE460TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X70, StE210.7-StE360.7TM
- Cast steel GP240R, GS45, Weather resistant steel

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops
- Heat exchanger industry
- Steel mills
- · Petrochemical industry
- Container frames

Chemical composition, wt.% weld metal – typical:

Type of wire	С	Si	Mn	Ni	Мо	Cu	Р	S
H 100	0,04	0,40	1,30					
H 150	0,10	0,15	1,70					
Cor-Ten	0,10	0,25	1,00	0,90	0,15	0,50		
H 100 Mo	0,10	0,15	1,00		0,50			
H 100 Ni1	0,08	0,15	1,10	0,95				

Mechanical Properties, weld metal – typical:

Condition		0,2% Yield	Tensile			pact Val	Values ISO-V J		
A = as well S = stress relieved		strength MPa	strength MPa	Lo=5d - %	0°C	-20°C	-40°C	-60°C	
H 100	Α	≥ 400	≥ 520	≥ 26	-	-	50	-	
H 150	Α	≥ 460	≥ 530	≥ 28	-	80	-	-	
Cor-Ten	Α	<u>≥</u> 460	<u>≥</u> 540	<u>></u> 24	70	50	-	-	
H 100 Mo	Α	> 490	> 590	> 24	-	65	35	-	
H 100 Ni1	Α	<u>></u> 460	<u>></u> 550	> 27	-	-	-	40	
H 100 Ni1	S	> 430	> 520	> 27	-	-	-	70	

type	Weight / kg.
bag	25 kilo

EN 760: S A FB 1 55 AC H5

AWS A5.17: F8A4-EM12 / F7A4-~EM12K / F7A6-EH12K / F8A6-EH14
AWS A5.23: F9A4-EA2-A2 / F8A0-EB2-B2 / F8A0-EB3-B3 / F11A8-EG-F6
F8A6-ENi1-Ni1 / F8A7-ENi2-Ni2
EN 756: S 50 4 FB S2 / S 46 2 FB S3 / S 46 6 FB S3Si / S 50 6 FB S4
S 50 2 FB S2Mo / - / S 46 6 FB S2Ni1 / S 46 6 FB S2Ni2

Flux type: Current: Welding positions:

Agglomerated high basic

Approvals in combination with wire:

H 100 Mo: CL, LR

HW 580 is our agglomerated high-basic flux for submerged arc welding low alloyed fine grain steels. HW 580 is suitable for single and multipass welding, for fillet welds and multi wire applications. The weld has an excellent appearance and the slag is self-releasing. The weld metal, produced in combination with corresponding wires, offers good mechanical properties also at low temperatures. The basicity index is 2,1 ca. (Boniszewski).

Base materials to be welded:

- Ship plates A E(H)36, S235J S355G3S
- Structural steels S185 S355J2, St.33 St. 52-3U
- Boiler steels P235GH-P355GH, HI, HII, 17Mn4, 19Mn6 16Mo3, A 355 Gr. P1, 13CrMo44, A 333 Gr. P12, 10CrMo9.10, A 335 Gr. P22
- Fine grain steels S275N-S500NL, StE 285-StE 355
- Pipe steels L210MB-L415MB, API 5L X52-X70
- Cast steels up to GS-18CrMo9.10
- · Heat treatable, case hardening and nitriding steels

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- · Pressure vessels & boiler industry
- Pipelines
- Transport & lifting industry

Chemical composition, wt.% weld metal – typical:

Chomical compos	161011, 116170		ty pioui.					
Type of wire	С	Si	Mn	Ni	Мо	Cr	Р	S
H 100	0,05	0,40	1,30					
H 150	0,10	0,15	1,60					
H 150 Si	0,10	0,40	1,70					
H 200	0,10	0,15	2,00					
H 100 Mo	0,10	0,15	1,00		0,50			
H 100 CrMo1	0,10	0,15	1,00		0,50	1,20		
H 60 CrMo2	0,10	0,15	0,60		1,00	2,50		
H 150 NiCrMo1	0,08	0,20	1,45	2,00	0,60	0,30		
H 100 Ni1	0,12	0,15	1,10	1,00				
H 100 Ni2	0,10	0,15	1,10	2,40				

EN 760: S A FB 1 55 AC H5

AWS A5.17: F8A4-EM12 / F7A4-~EM12K / F7A6-EH12K / F8A6-EH14 AWS A5.23: F9A4-EA2-A2 / F8A0-EB2-B2 / F8A0-EB3-B3 / F11A8-EG-F6 F8A6-ENi1-Ni1 / F8A7-ENi2-Ni2

EN 756: S 50 4 FB S2 / S 46 2 FB S3 / S 46 6 FB S3Si / S 50 6 FB S4 S 50 2 FB S2Mo / - / S 46 6 FB S2Ni1 / S 46 6 FB S2Ni2

Mechanical properties, weld metal - typical:

Condition		0,2% Yield	Tensile	Elongation	lı	mpact '	Values	ISO-V					
A = as welde	ed	strength	strength	Lo=5d - %	0°C	-20°C	-40°C	-60°C	-80°C				
		MPa	MPa										
H 100	Α	≥ 510	≥ 600	≥ 26	-	-	70	-	-				
H 150	Α	≥ 480	≥ 550	≥ 26	-	150	-	-	-				
H 150 Si	Α	≥ 460	≥ 550	≥ 28	-	-	-	95	-				
H 200	Α	≥ 510	≥ 600	≥ 26	-	-	-	50	-				
H 100 Mo	Α	> 560	> 640	≥ 24	-	80	50	-	-				
H 100 CrMo1	Α	> 500	> 600	<u>></u> 23	80	-	-	-	-				
H 60 CrMo2	Α	> 500	> 600	≥ 23	80	-	-	-	-				
H 150 NiCrMo1	Α	> 690	> 760	<u>-</u> 18	-	80	47	-	-				
H 100 Ni1	Α	<u>−</u> 510	<u>~</u> 590	<u>~</u> ≥ 26	-	-	-	60	-				
H 100 Ni2	Α	≥ 480	≥ 580	≥ 26	-	145	-	-	45				

type	Weight / kg.
bag	25 kilo

Stainless Steel

Basic Facts about Stainless Steel

What is Stainless Steel?

Stainless steel is the generic name for a number of different steels used primarily for their resistance to corrosion. The key element they all share is a certain minimum percentage (by mass) of chromium: 12%. Although other elements, particularly nickel and molybdenum, are added to improve corrosion resistance, chromium is always the deciding factor.

What causes corrosion?

Corrosion is a natural phenomenon as nature seeks to combine other elements which man has produced in a pure form for his own use. Iron occurs naturally as iron ore. Pure iron is therefore unstable and wants to "rust"; that is to combine with oxygen in the presence of water. For most of the Iron Age, which began about 1000 BC, cast and wrought iron was used; iron with a high carbon content and various unrefined impurities. The production of steel did not begin until the 19th century. At present the majority of steel produced in the world is carbon steel, which can be defined as an alloy of a small content of carbon combined with well-refined iron. Despite its various additions stainless steel still behaves as steel, it is not like the nickel alloys that are really alloys of a number of different metals, iron ore only being one. Even highly alloyed stainless steel grades, such as 316, have a minimum of 62% iron.

Carbon steels without any protection will form a coating of rust that will in a sense protect the rest of the steel. So constantly removing the rust exposes a new fresh layer of steel to be attacked. This is called general corrosion. Various coatings will impede the rusting process, in particular painting, coating with zinc (galvanised steel), and epoxy resins. Another lateral way of reducing corrosion is to put corrosion inhibitors into the solutions that would otherwise cause iron to corrode.

The unique advantage of stainless steel.

For a wide range of applications, stainless steel competes with carbon steels supplied with protective coatings, as well as other metals such as aluminium, brass and bronze. The success of stainless steel is based on the fact that it has one big advantage. The chromium in the stainless steel has a great affinity for oxygen, and will form on the surface of the steel at a molecular level a film of chromium oxide. This thin layer is described as passive, tenacious and self-renewing. Passive means that it does not react or influence other materials; tenacious means that it clings to the layer of steel and is not transferred elsewhere; self-renewing means that if damaged or forcibly removed more chromium from the steel will be exposed to the air and form more chromium oxide. This means that over a period of years a stainless steel knife can literally be worn away by daily use and by being re-sharpened on a sharpening stone and will still remain stainless. Manhole and access covers in the water treatment and chemical industry are widely made out of both galvanised steel and stainless steel. In normal use galvanised steel can last many years without corrosion occurring and in these cases there would be little advantage apart from aesthetic reasons to switch to stainless steel. Where stainless comes into its own is where the galvanised coating is constantly being worn away, for example by chains being dragged over it, or constantly being walked over, or where very corrosive chemicals are being randomly splashed onto it.

This leads to the fact that fabrication in stainless steel will always be more expensive than using ordinary steel, not just because of the higher cost of stainless steel, but also because it is more difficult to machine. However it is the better life cycle costs of stainless steel that makes it attractive, both in terms of much longer service life, less maintenance costs, and high scrap value on decommissioning.

Product characteristics.

Stainless steel can be selected for use compared to other materials for a number of reasons, not just its corrosion resistance. These include:

- Aesthetic qualities: it can be polished to a satin or mirror finish;
- "Dry corrosion" occurs to steel at higher temperatures where it oxidises or scales up. Stainless steel is far more
 resistant to this than ordinary carbon steel and grades such as 310 (25% chromium 20% nickel) were
 specifically developed for use at high temperatures;
- Non-contamination of the liquids stainless comes into contact with, because there is no coating to break down and dissolve;
- Weight savings: as thinner sections and more innovative design structures can be used, with cost savings on foundations and platform weights;
- Many anti-corrosion coatings are fire hazards or the materials themselves have a low melting point.

Stainless Steel

Applications.

The most everyday use of stainless steel is obviously in <u>cutlery</u>. Very cheap cutlery is made out of grades 409 and 430, with the finest quality cutlery using specially produced 410 and 420 for the knives and grade 304 (18/8 stainless, 18% chromium 8% nickel) for the spoons and forks. The different grades are used as 410/420 can be hardened and tempered so that the knife blades will take a sharp edge, whereas the more ductile 18/8 stainless is easier to work and therefore more suitable for objects that have to undergo numerous shaping, buffing and grinding processes.

Very large amounts of stainless steel are used in <u>food production and storage</u>. The most commonly used grades are 304 and 316. Typical uses would be dairy, milk storage and ham curing, frozen and salted fish storage. Whereas 304 is used for normal temperatures and acid concentrations, 316 is used for harsher environments. For example 304 is used in cheese production, but where salted ham is being prepared 316 is used. For low concentrations of phosphoric acid (one of the constituents of cola) 304 is used, but at higher temperatures and concentrations 316 is used. Food slicers are made out of 420 and 440. Very often in food production stainless is used not because the food itself is corrosive but the use of stainless allows for faster and more efficient cleaning. For example in ice cream production 316 is specified so that strong anti-bacteriological cleaning and rinsing systems can be used. One of the great advantage of stainless steel is that imparts no taste to the food that is comes into contact with.

The <u>pumping and containment of oils, gases and acids</u> has created a large market for stainless tanks, pipes, pumps and valves. The storage of dilute nitric acid was one of the first major success stories for 18/8 stainless steel as it could be used for thinner sections and was more robust than other materials. Special grades of stainless have been developed to have greater corrosion resistance. These are used in desalination plants, sewage plants, offshore oilrigs, harbour support and ships propellers.

<u>Architecture</u> is a growing market. Many modern building uses stainless for cladding. When reinforced concrete first started to be used it was considered that the carbon steel used would not rust, as cement, obviously derived from limestone, is alkaline. However, constantly using grit salt on bridges can change the pH to acidic thereby rusting the steel, which expands and cracks the concrete. Stainless steel reinforcing bar, although initially expensive, is proving to have good life cycle costing. The low maintenance cost and anti-vandal characteristics of stainless provides a growing market in public transport, ticket machines and street furniture.

The <u>nuclear power industry</u> uses large quantities of stainless, often specified with a low cobalt content, for both power and radiation containment. Special louvered ventilation shafts are made, which are used in case of emergencies to seal off plants for years if necessary. Steam and gas turbines use stainless because of its corrosion resisting and heat resisting qualities.

Especially clean melted stainless is used for <u>medical implants</u> and artificial hips. A great deal of <u>medical equipment</u> – such as orthopaedic beds, cabinets and examination machines – is made as standard from stainless because of its hygienic and easy-clean qualities. Pharmaceutical companies use stainless for pill funnels and hoppers and for piping creams and solutions.

<u>Automobile industries</u> are making increasing use of stainless steel, primarily for exhaust systems (grade 409) and catalytic converters, but also for structural purposes.

Classification of Stainless Steel.

Stainless steel is commonly divided into five groups, depending on the specific amounts of alloying elements, which control the microstructure of the alloy.

Austenitic Stainless Steel.

Austenitic Stainless Steel is the most weldable of the stainless steel grades and can be divided rather loosely into three groups: common chrome-nickel (300 series), manganese-chromium-nickel-nitrogen (200 series) and special alloys. Austenitic is the most popular stainless steel group and is used for numerous industrial and consumer applications, such as in chemical plants, power plants, food processing and dairy equipment.

Ferritic Stainless Steel.

Ferritic Stainless Steel consists of iron-chromium alloys with body-centred cubic crystal structures. They can have good ductility and formability, but high-temperature strengths are relatively poor when compared to austenitic grades. Some ferritic grades (such as type 409 and 405) used, for example, in mufflers, exhaust systems, kitchen counters and sinks, cost less than other stainless steel grades. Other more highly alloyed steels low in C and N (such as types 444 and 261) are more costly but are highly resistant to chlorides.

Martensitic Stainless Steel.

Martensitic Stainless Steel, such as type 403, 410, 410NiMo and 420, are similar in composition to the ferrite group, but contain a balance of C and Ni vs. Cr and Mo; hence austenite at high temperatures transforms to martensite at low temperatures. Like ferrite, they also have a body-centred cubic crystal structure in the hardened condition. The carbon content of these hardenable steels affects forming and welding. To obtain useful properties and prevent cracking, the weldable martensitics usually require preheating and post-weld heat treatment.

Duplex

Primarily used in chemical plants and piping applications, the duplex stainless steels are developing rapidly today and have a microstructure of approximately equal amounts of ferrite and austenite. Duplex stainless steels typically contain about 22-25% Chromium and 5% Nickel with Molybdenum and Nitrogen. Although duplex and some austenitics have similar alloying elements, duplex has higher yield strength and greater stress corrosion cracking resistance to chloride than austenitic stainless steels.

Precipitation Hardening

Precipitation-hardening Stainless Steel is chromium-nickel stainless, that contains alloying additions such as aluminium, copper or titanium which allow them to be hardened by a solution and aging heat treatment. They can be either austenitic or martensitic in the aged condition. Precipitation-hardening stainless steels are grouped into three types: martensitic, semiaustenitic and austenitic. The martensitic (such as type 630) and semiaustenitic (such as type 631) can provide higher strength than the austenitic (such as type 660, also known as A286) types.

Stainless Steel

Selecting the welding process.

Since stainless steel is more expensive than regular steel, it is important to choose a process that provides the best results, avoiding such common problems as melt-through (especially when welding thin sections). Following are different processes recommended for welding stainless steel. Process selection is to be made on a case-by-case basis depending on the particular application and availability of equipment.

MMA Manual metal arc welding (ASME: SMAW)

MMA, using covered electrodes, is still the most widely used welding process when it comes to welding stainless steel. The process is suited to all weldable grades, in thickness of 1 mm. and upward. In principle there is no upper limit of thickness. However, for heavier material, the automatic welding processes are often more economical. Although there is a trend towards these wire-processes, manual welding still represents the major proportion of total welding operations.

Factors to consider when choosing an electrode.

The electrode should be of the same basic analysis as the parent metal. This gives the weld its optimum corrosion resistance. However, certain exceptions are permissible. For example a high-alloy electrode may sometime be used for welding a low alloy parent metal. The reason for doing so is weldability and mechanical strength. In all cases the corrosion conditions must be considered. In citric acid, grade 18-10L is more resistant than 17-12-2,5L. In such applications, grade 18-10L should be welded with HILCHROME 308R electrodes and not with a higher alloyed type.

There are basically four different types of covered electrodes for stainless applications: lime or basic (-15), titania or rutile-basic (-16), silica-titania or rutile (-17) and heavy coated for flat and horizontal welding (-26). Electrode selection will be based mainly on the welding position.

Basic coated (-15)	DC only	Vertical and overhead welding and all-positions applications such as pipe-welding Root passes on heavy plate Fully austenitic high alloyed stainless steels subject to weld-centerline cracking
Rutile-basic coated (-16)	AC / DC, DC preferred	Applications in the flat position Uphill and overhead welding when lime covered electrodes are not available
Rutile coated (-17)	AC / DC, DC preferred	Flat- and horizontal position welding when minimum cleanup is desired When a concave bead appearance is desired
Heavy coated (-26)	AC / DC, DC preferred	Recommended for flat position, horizontal fillet is possible High-current, high-deposition rate welding

Gas Metal Arc Welding (MAG Welding)

The main advantage of MIG welding is its speed. Using a spool of solid wire, an operator can produce high deposition rates. Solid wire can be used in short-circuiting, globular and spray modes of arc transfer, giving GMAW a wide range of deposition rates and heat inputs. While pulsed GMAW can be used on thinner sections or for out-of-position welding, conventional spray transfer is used to join thicker sections because of its high deposition rates. Short-circuiting transfer is extensively used for stainless steel sheet and thin tubing.

MIG welding requires a shielding gas to prevent oxidation of the stainless steel alloys in the welding arc. Depending on the location and regional tendencies, mixtures of argon, helium and CO_2 are used.

The MIG process is either semi-automatic or fully automatic. It is a more economical process than welding with covered electrodes. However, all gas-shielded processes are sensitive to draughts meaning they are not suitable for outdoor work or for welding in open vessels in which a chimney effect may easily occur.

Stainless Steel

Flux Cored Arc Welding (ASME: FCAW)

Traditionally, the most frequently used processes for welding stainless steels were MMA followed by MIG, TIG and SAW. The fifth process FCAW is developed more recently and offers fabricators a genuine opportunity to increase productivity. Nowadays FCAW is the most used process for welding stainless steels.

FCAW is commonly used for welding stainless steel in the flat position as well as out of position. Cored Wires uses basically the same wire feed equipment and power supply as the MIG process. Unlike MIG wires, however, some Cored Wires contain a very fast freezing flux to form a slag shelf, which allows out of position welding without a special power supply.

Like MIG welding FCAW requires a shielding gas. We recommend either a mixed gas 75%Ar-25%CO₂ or pure CO₂. The difference between these concerns mainly the weldability and possibility to weld vertical upwards.

Gas Tungsten Arc Welding (TIG Welding)

Although slower than MIG and FCAW, TIG Welding can produce high quality, clean welds with minimal defects. Able to weld thin sheets without melt-through, manual and automatic TIG Welding are used for joining conventional and PH stainless steel – particularly in thicknesses op to 5 mm. To avoid contaminating the stainless steel with tungsten, the tungsten electrode should never touch the workpiece.

TIG Welding is typically used for critical welds where strict conformance to code is mandatory, such as in the food service and nuclear industries. In pipe and pressure-vessel welding, TIG is often used for root passes before switching to other processes for the fill passes.

Normally, DC electrode negative (DCEN) is used with a power supply having a constant current output. Alternating Current (AC) is sometimes used for more cleaning action while welding stainless steels containing aluminium. Shielding gas is normally argon, though helium or an argon-helium mixture might be used for greater penetration. The tungsten electrode should be alloyed with thorium when welding stainless steel.

Submerged Arc Welding (ASME: SAW)

Submerged Arc Welding is used for heavy workpieces. Usually, one or two bottom weld beads are deposited first by some other welding process. The joint is then filled by SAW. In certain cases, the bottom bead may also be submerged-arc welded. In such case we use root-backing tapes.

The flux is supplied thorugh a funnel located ahead of the filler wire, which is fed continuously. The flux exercises a shielding function. During welding, part of it is converted into a readily removable slag. Welding is generally performed using DC electrode positive (DCEP). During SAW, extensive interaction occurs between the welding wire and the flux. Chemical elements can be exchanged.

POINTS TO REMEMBER WHEN WELDING STAINLESS STEEL

Before welding

Adjust the root gap and joint angle in a way securing good penetration, for duplex types a wider root gap is recommended

- 1. Clean the joint and base metal thoroughly
- 2. Use only stainless brushes for cleaning
- 3. Preheating is normally not recommended
- 4. Always use dry electrodes, if necessary redry covered electrodes at 250-350°C for 2 hours

During welding

- 1. The heat input should be related to the plate thickness and welding method
- 2. Avoid striking the arc outside the joint. Arc strikes can act a initiation points for pitting corrosion and cracks
- 3. A correct root gas shielding is important. Suitable backing gas are high purity Ar or mixtures containing N_2 and H_2
- 4. Excessive weaving should be avoided. This can result in an overly high heat input

After welding

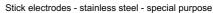
- Thorough cleaning after welding is essential to obtain good corrosion resistance. All slag and oxide on and around the weld must be removed
- 2. Brushing should be done manually and only with stainless brushes
- 3. Rotating brushes can result in micro-crevices in the weld metal
- 4. Subsequent heat treatment is normally not necessary
- 5. Stress relieving should be avoided since this can cause embrittlement of the steel and weld metal
- 6. When polishing, use a new grinding stone. Small iron particles in a grinding stone might get pushed into the steel, in this way initiating corrosion.

Typical filler metals for welding Stainless Steel

Base	materials	Service condition		G CONSUMABLES STAINLESS STEEL
Wrought	Cast		Stick electrodes	Other filler metals
201 202 301 302 304 305 308	CF-8 CF-20	As welded or annealed	Hilchrome 308R	Hilchrome G308L Si Hilcord 81 Hilchrome W308L Si Hilchrome S308L + flux
302B	-	As welded	Hilchrome 309R Hilchrome 310R	Hilchrome G309L Si Hilcord 85 Hilchrome W309L Si Hilchrome S309L / HW 120
303 303Se	-	As welded or annealed	Hilchrome 312R Hilchrome 309R	Hilchrome G309L Si Hilcord 85 Hilchrome W309L Si Hilchrome S309L / HW 120
304L	CF-3	As welded	Hilchrome 308R Hilchrome 347R	Hilchrome G308L Si Hilcord 81 Hilchrome W308L Si Hilchrome S308L + flux
308L	-	As welded	Hilchrome 308R	Hilchrome G308L Si Hilcord 81 Hilchrome W308L Si Hilchrome S308L + flux
309	CH-20	As welded	Hilchrome 309R	Hilchrome G309L Si Hilcord 85 Hilchrome W309L Si Hilchrome S309L / HW 120
310	CK-20	As welded	Hilchrome 310R	-
310S	-	As welded	Hilchrome 310R	-
316	CF-8M CF-12M	As welded or annealed	Hilchrome 316R Hilchrome 316R-V	Hilchrome G316L Si Hilcord 83, Hilcord 83LT-1 Hilchrome W316L Si Hilchrome S316L + flux
316L	CF-3M	As welded or stress relieved	Hilchrome 316R Hilchrome 316R-V	Hilchrome G316L Si Hilcord 83, Hilcord 83LT-1 Hilchrome W316L Si Hilchrome S316L + flux
317	CG-8M	As welded or annealed	317 Grade (on request)	
321 321H	-	As welded	Hilchrome 347R	Hilchrome W347Si
347 347H 348 348H	-	As welded	Hilchrome 347R	Hilchrome W347Si
410	-	As welded	Hilchrome 308R, 309R, 310R	308, 309 Grades
405	-	As welded	Hilchrome 308R, 309R, 310R	308, 309 Grades
420	-	As welded	Hilchrome 308R, 309R, 310R	308, 309 Grades
430	-	As welded	Hilchrome 308R, 309R, 310R	308, 309 Grades
430Ti	-	As welded	430 Grade (on request)	1000 000 0
431	-	As welded	Hilchrome 308R, 309R, 310R	308, 309 Grades

Typical filler metals for welding Stainless Steel

Base	materials	Service condition	HILCO WELDING CONSUMABLES FOR WELDING STAINLESS STEEL			
Wrought	Cast		Stick electrodes	Other filler metals		
442	-	As welded	Hilchrome 308R, 309R, 310R	308, 309 Grades		
446	-	As welded	Hilchrome 308R, 309R, 310R	308, 309 Grades		
16-8-2	-	As welded	-	-		
A584 type 630	-	As welded Heat treated	-	-		
2205	-	As welded	Hilchrome 2209	Hilchrome G2209 Hilchrome W2209 Hilchrome S2209 / HW 120		
2553	-	As welded	Hilchrome 2553 (on request)	Hilchrome W2553 (on request)		


For other base materials we recommend you to contact us for more detailed information.

	347,	321,	317	316L	316,	310S	310	309S	309	308	304
	347H	321H			316H						
304H,	308R	308R	308R	308R	308R	308R	308R	308R	308R	308R	308R
305,			316R	316R	316R	309R	309R	309R	309R		
304	2000	308R	(317)	308R	308R	310R	310R	2000	2000	2000	
304L	308R 347R	308R 347R	308R 316R	308R 316R	308R 316R	308R 309R	308R 309R	308R 309R	308R 309R	308R	
	34710	J471X	(317)	31010	31010	310R	310R	3031	30311		
308	308R	308R	308R	308R	308R	308R	308R	308R	308R		
	347R	000.1	316R	316R	316R	309R	309R	309R	309R		
			(317)			310R	310R				
309	309R	309R	309R	309R	309R	309R	309R	309R		•	
	347R	347R	316R	316R	316R	310R	310R				
309S	309R	309R	309R	309R	309R	309R	309R				
	347R	347R	316R	316R	316R	310R	310R				
310	308R	308R	(247)	316R	316R	310R		J			
310	310R	310R	(317) 309Mo	309Mo	309Mo	310K					
	31010	31010	310R	310R	310R						
310S	308R	308R	(317)	316R	316R						
0.00	310R	310R	309Mo	309Mo	309Mo						
316H,	308R	308R	(317)	316R							
316	316R	316R	316R								
	347R										
316L	316R	316R	(317)								
	347R										
317	308R	308R									
317	(317)	(317)									
	347R	(017)									
321H,	308R										
321	347R										

For other base materials we recommend you to contact us for more detailed information.

AWS A5.4: E307-16

EN 1600: E 18 8 Mn R 12

Werkstoffnr, 1,4370

Coating type:

Rutile-basic

Approvals:

Arc voltage: 50V

Tip colour:

Current:

Welding positions:

Printing:

Hilchrome 307R / E307-16

Hilchrome 307R is our rutile basic coated electrode for joining dissimilar steels and difficult-to-weld steels. Typical applications include joining 14Mn steels, spring steels, tool steels, high carbon steels. The electrode is recommended for buffer layers prior to surfacing. The deposit weld metal features strain hardenability, excellent cavitation resistance, thermal shock resistance, crack resistance and scaling resistance up to 850°C. Hilchrome 307R is a core wire alloyed all-current type (AC/DC).

Base materials to be welded:

- Armour plate
- Hardenable steels incl. DFTW-steels
- Non-magnetic austenitic steels
- Work hardening austenitic manganese steels
- Heat resisting ferritic chromium steels
- Dissimilar joining

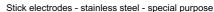
Applications:

- Repair shops
- Car industry
- Heat exchanger industry
- Cement industry
- Railways
- Cane sugar industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	Hilchrome W307	Hilcord 82	Hilchrome G307	S307 / HW 100	

Chemical composition, wt. % weld metal - typical:


С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	6,50	0,70	≤ 0,030	≤ 0,030	18,8	8,80					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 500	≥ 650	≥ 30	+20°C ≥ 80

. acnagg a.		w.			
Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A		
2,5	300	18,9	60-80		
3,2	350	34,6	80-120		
4,0	350	51,1	100-160		

Hilchrome 309R

AWS A5.4: E309L-17 EN 1600: E 23 12 L R 32

Werkstoffnr. 1.4332

Coating type:

Rutile

Arc voltage: 50V

Approvals:

Current:

~ =+

Tip colour:

Welding positions:

Printing:

Hilchrome 309R / E309L-17

Hilchrome 309R is our rutile coated electrode for welding corrosion resistant and heat resistant CrNi steels, joining dissimilar metals and buffering. Typical applications include joining high-strength steels, un- and low alloyed heat treatable steels, stainless, ferritic chromium and austenitic chrome-nickel steels, austenitic manganese steels. The electrode suitable for joining clad steels. The FN content (FN ~16) ensures good cracking resistance. Hilchrome 309R is a core wire alloyed all-current type (AC/DC).

Base materials to be welded:

- High strength, unalloyed and alloyed heat treatable steels; stainless, ferritic chromium and austenitic CrNi steels; austenitic manganese steels
- Chemically resistant weld claddings ranging from ferritic-pearlitic steels to fine grain steels, incl. high temperature fine grain steels
- Dissimilar joining

Applications:

- · Pressure vessel & boiler industry
- Repair shops
- Gas industry
- Cane sugar mills
- Cement industry
- Petrochemical industry
- Mine industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	Hilchrome G309LSi	Hilcord 85	Hilchrome W309LSi	S309L / HW120	

Chemical composition, wt. % weld metal - typical:

1	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
	0,02	0,70	0,70	≤ 0.030	≤ 0.030	22,7	12,5					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 440	≥ 550	≥ 30	+20°C ≥ 47

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A		
2,5	300	18,0	60-90		
3,2	350	33,8	80-120		
4,0	350	51,1	100-160		

Hilchrome 309MoR

Stick electrodes - stainless steel - special purpose

AWS A5.4: E309MoL-17 EN 1600: E 23 12 2 L R 32

Werkstoffnr, 1,4459

Coating type:

Rutile

Current:

Arc voltage: 50V

Approvals: TüV

Tip colour:

Welding positions:

Printing:

Hilchrome 309MoR / E309MoL-17

Hilchrome 309MoR is our rutile coated electrode for joining similar and dissimilar steels, buffering, joining hardenable and difficult-to-weld steels. Typical applications include joining high strength steels, un- and low alloyed structural steels and heat treatable steels. The electrode is suitable for joining clad steels. The Mo-alloyed electrode has an increased FN content (FN ~20) ensuring maximum cracking resistance. Hilchrome 309MoR is a core wire alloyed all-current type (AC/DC).

Base materials to be welded:

- Similar and dissimilar joining high strength, unalloyed and alloyed structural steels and heat treatable steels
- Un- and low alloyed boiler steels, CrNi(Mo) steels
 Combinations between forriting and systemitie steels.
- Combinations between ferritic and austenitic steels
- First layer in CrNiMo claddings AISI 316L and similar austenitic stainless steels
- Dissimilar joining

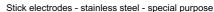
Applications:

- · Pressure vessel & boiler industry
- Repair shops
- Gas industry
- Cane sugar mills
- Cement industry
- Petrochemical industry
- Mine industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing	
=	-	Hilcord 85Mo	Hilchrome W309LMo	-	-	

Chemical composition, wt. % weld metal – typical:


С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,02	0,80	0,70	< 0.030	< 0,030	23,0	12,5	2,70				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values		
	MPa	MPa	Lo=5d - %	ISO-V J		
As welded	≥ 650	≥ 750	≥ 25	+20°C ≥ 47 -10°C ≥ 32		

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
2,5	300	18,5	60-80
3,2	350	36,8	80-120
4,0	350	53,2	100-160

Hilchrome 312R

AWS A5.4: E312-17

EN 1600: E 29 9 R 3 2

Werkstoffnr. 1.4337

Coating type:

Rutile

Arc Voltage: 65V

Approvals:

Current:

~ =+

Tip colour:

Welding positions:

Printing:

Hilchrome 312R / E312-17

Hilchrome 312R is our rutile coated electrode which is to be considered as a problem solver for all kinds of steel grades incl. stainless and difficult-to-weld steels. Typical applications for this WELD-ALL include joining hard manganese steels, tool steels, spring steels, buffering as well as joining dissimilar steel grades. The electrode deposits a crack-resistant weld metal with an increased ferrite content of approx. FN50. Hilchrome 312R is a core wire alloyed all-current type (AC/DC).

Base materials to be welded:

- Armour plate
- Hardenable steels incl. DFTW-steels
- Tool, die and spring steels
- · Austenitic manganese steels
- Hardfacing clutches, gear wheels, shafts
- · Buffer layers prior to hardfacing
- · Dissimilar joining

Applications:

- Repair shops
- Cement industry
- Steel mills
- Mine industry
- RailwaysCane sugar mills

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
=	Hilchrome G312	-	Hilchrome W312	-	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	0,70	1,20	≤ 0.020	≤ 0.025	28,5	9,5					

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values	
	MPa	MPa	Lo=5d - %	ISO-V J	
As welded	As welded ≥ 650		≥ 22	+20°C ≥ 30	

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	300	17,5	60-80
3,2	350	32,3	80-120
4,0	350	47,8	110-145

Hilchrome 308R

AWS A5.4: E308L-17 EN 1600: E 19 9 L R 32

Werkstoffnr, 1,4316

Coating type:

Approvals:

Rutile

TüV

Current:

Tip colour:

Welding positions:

Printing:

Hilchrome 308R / E308L-17

Hilchrome 308R is our rutile coated electrode for welding low carbon 18Cr10Ni austenitic stainless steel grades like AISI 304, 304L. Typical applications include all industries where similar materials (incl. higher carbon types) as well as ferritic 13% Cr steels are used. Hilchrome 308R is also suitable for Nb (Cb) or Ti stabilised grades 347 and 321. Weld metal has an excellent resistance to general and intergranular corrosion (up to 350°C), good resistance to oxidising acids and cold reducing acids. Hilchrome 308R is a core wire alloyed all-current type (AC/DC).

Base materials to be welded:

- ASTM/AISI Grade 302, 304, 304L, 304LN, 321, 347
- WNr 1.4306, 1.4301, 1.4541, 1.4550, 1.4311, 1.4300
- · CrNi 18 10 and similar stainless steel grades

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- Office furniture industry
- · Food processing industry
- Petrochemical industry
- · Dairy and cold storage industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	Hilchrome G308LSi	Hilcord 81	Hilchrome W308LSi	S308L/HW100	-

Chemical composition, wt. % weld metal - typical:

		,	,								
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0.03	0.80	0.80	< 0.025	< 0.030	19.8	10.2					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J		
As welded	≥ 420	≥ 550	≥ 35	+20°C ≥ 70 -196°C ≥ 32		

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A		
2,0	300	11,3	40-60		
2,5	300	17,5	50-90		
3,2	350	33,3	80-120		
4,0	350	50,6	110-160		

AWS A5.4: E347-17

EN 1600: E 19 9 Nb R 32

Werkstoffnr, 1,4551

Coating type:

Rutile

Arc voltage: 50V

Approvals: TüV Current:

Tip colour:

Printing:

Hilchrome 347R / E347-17

Welding positions:

Hilchrome 347R is our stabilised electrode for welding low carbon 18Cr10NiNb (Cb) austenitic stainless steel grades like AlSI 347, 321. Typical applications include all industries where similar materials (incl. higher carbon types) as well as ferritic 13% Cr steels are used. Hilchrome 347R is also suitable for unstabilised grades 304 and 304L. Weld metal has an excellent resistance to general and intergranular corrosion (up to 400°C). Hilchrome 347R is a core wire alloyed all-current type (AC/DC).

Base materials to be welded:

- ASTM/AISI Grade 347, 321, A 296 CF8C, 304, A157 C9, A320 B 8 C and D, 304LN, 302
- WNr. 1.4550, 1.4541, 1.4552, 1.4301, 1.4312, 1.4878, 1.6905, 1.4311, 1.4306, 1.4300
- Stabilised CrNiNb 18 10 and similar stainless steel grades

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- Office furniture industry
- · Food processing industry
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	Hilchrome W347Si	=	-

Chemical composition, wt. % weld metal - typical:

Chemical Composition, wa 76 Word metal Typican												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,03	0,80	0,80	≤ 0,030	≤ 0,030	19,5	10,0			10xC		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values	
	MPa	MPa	Lo=5d - %	ISO-V J	
As welded	≥ 400	≥ 580	≥ 35	+20°C ≥ 50	

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
2,5	300	17,5	50-90
3,2	350	34,2	80-120
4,0	350	50,6	110-160

Hilchrome 316R

AWS A5.4: E316L-17

EN 1600: E 19 12 3 L R 12

Werkstoffnr. 1.4430

Coating type:

Rutile

Current:

Welding positions:

Arc voltage: 50V

Approvals: LR, TüV Tip colour:

Printing:

Hilchrome 316R / E316L-17

Hilchrome 316R is our multi-purpose electrode for welding low carbon 17Cr12Ni3Mo austenitic acid resistant stainless steel grades like AlSI 316. 316L. Universal in applications but typical for all industries where superior corrosion resistance is required: textile industry, paper mills, chemical industry, cellulose industry etc., resistance to general and intergranular corrosion (up to 400°C), good resistance to hot cracking. Hilchrome 316R is a core wire alloyed all-current type (AC/DC).

Base materials to be welded:

- ASTM/AISI Gr. 316, 316L, 316LN, 316Cb, 316Ti
- WNr 1.4583, 1.4435, 1.4436, 1.4404, 1.4401, 1.4571 1.4580, 1.4406*, 1.4429*
 - * without postweld quenching
- CrNiMo 17 12 3 and similar stainless steel grades

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- Cellulose & textile industry
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW			GTAW	SAW	Gas welding / brazing	
=	Hilchrome G316LSi	Hilcord 83	Hilchrome W316LSi	S316L/HW100	-	

Chemical composition, wt. % weld metal - typical:

The state of the s												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,03	0,80	0,80	≤ 0,025	≤ 0,030	18,8	11,7	2,7				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values		
	MPa	MPa	Lo=5d - %	ISO-V J		
As welded	≥ 450	≥ 580	≥ 35	+20°C ≥ 50 -120°C ≥ 32		

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,0	300	11,3	40-60
2,5	300	17,5	50-90
3,2	350	34,2	80-120
4,0	350	50,6	110-160

Hilchrome 316R-V

Stick electrodes - stainless steel - acid resistant

AWS A5.4: E316L-17

EN 1600: E 19 12 3 L R 12

Werkstoffnr, 1,4430

Coating type:

Rutile

Arc voltage: 50V

Approvals:

Current:

Tip colour:

Welding positions:

Printing:

Hilchrome 316R-V / E316L-17

Hilchrome 316R is our rutile coated grade 316L electrode for DC welding austenitic acid resistant stainless steels in vertical down position. Highly economical in usage as the electrode offers approx. 50% time savings over vertical upwards position using the same type of electrodes. Hilchrome 316R-V performs best welding thin sheet metals, root and cover passes in V-butt joints. Hilchrome 316R-V is core wire alloyed.

Base materials to be welded:

- ASTM/AISI Gr. 316, 316L, 316LN, 316Cb, 316Ti
- WNr 1.4583, 1.4435, 1.4436, 1.4404, 1.4401, 1.4571 1.4580, 1.4406*, 1.4429*
 - * without postweld quenching
- CrNiMo 17 12 3 and similar stainless steel grades

Applications:

- Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- Cellulose & textile industry
- Petrochemical industry

Equivalent product in alternative welding process:

		<u> </u>	01					
SMAW	GMAW	FCAW	GTAW	SAW	OAW			
-	Hilchrome G316LSi	Hilcord 83	Hilchrome W316LSi	S316L/HW100	-			

Chemical composition, wt. % weld metal - typical:

The initial composition, it is 70 treatment. Typican												
ſ	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
Г	0.03	0.70	0.70	< 0.025	< 0.030	19.0	12.0	27				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J +20°C ≥ 50	
As welded	≥ 450	≥ 580	≥ 35		

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A		
2,5	300	14,9	75-85		
3,2	300	24,2	105-115		

AWS A5.4: E 318 -17

EN 1600: E 19 12 3 Nb R 3 2 Werkstoffnr, 1,4576

Coating type:

Arc voltage: 50V Approvals:

Rutile

TüV.

Current:

Tip colour:

Welding positions:

Printing:

Hilchrome 318R / E318 -17

Hilchrome 318R is our stabilised electrode for welding low carbon 17Cr12Ni3MoNb austenitic acid resistant stainless steel grades like AISI 318. Typical applications include all industries where superior corrosion resistance is required: textile industry, paper mills, chemical industry, cellulose industry etc., resistance to general and intergranular corrosion (up to 400°C), good resistance to hot cracking. Hilchrome 318R is a core wire alloyed allcurrent type (AC/DC).

Base materials to be welded:

- ASTM/AISI Gr. 316, 316L, 316Cb, 316Ti
- WNr 1.4571, 1.4580, 1.4401, 1.4581, 1.4410, 1.6905, 1.4583, 1.4436
- Stabilised CrNiMoNb 17 12 3 and similar stainless steel grades

Applications:

- Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- Cellulose & textile industry
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	Hilchrome W318 Si	-	-

Chemical composition, wt. % weld metal - typical:

The state of the s											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,03	0,80	0,80	≤ 0,025	≤ 0,030	19,0	11,5	2,7		10xC		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J +20°C ≥ 50	
As welded	≥ 500	≥ 650	≥ 30		

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	300	18,0	50-90
3,2	350	35,0	80-120
4,0	350	52,9	110-160

Hilchrome 310R

Stick electrodes - stainless steel - heat resistant

AWS A5.4: E310-16

EN 1600: E 25 20 R 12 Werkstoffnr. 1.4842

Coating type: Rutile-basic

Approvals:

Arc voltage: 50V

Current:

Tip colour:

Welding positions:

Printing:

Hilchrome 310R / E310 -16

Hilchrome 310R is our rutile-basic coated electrode for joining and surfacing 25Cr20Ni austenitic heat resistant Cr-, CrSi, CrNi and CrNiSi as well as ferritic-pearlitic CrAl steel grades. Maximum operating temperature in a non-sulphurous environment is 1150°C. When exposed to sulphurous gases (max. 2 g S/Nm3) we recommend a maximum working temperature up to 1040°C. Typical applications include annealing plants, hardening plants, steam boiler construction, crude oil industry and ceramic industry. Hilchrome 310R is core wire alloyed, AC/DC.

Base materials to be welded:

- ASTM/AISI Gr. 310 and similar heat resistant steels
- WNr. 1.4841, 1.4828, 1.4845, 1,4713, 1,4724, 1,4742
- · Heat resisting rolled, forged and cast steels

Applications:

- Pressure vessel & boiler industry
- · Heat exchanger industry
- Paper mills
- · Steel mills
- · Petrochemical industry

Equivalent product in alternative welding process:

=quiralone prous		mig process.			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
	-	-	_	_	-

Chemical composition, wt. % weld metal - typical:

Г	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
Г	0,10	2,00	0,50	≤ 0,025	≤ 0,025	26,0	21,0					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 380	≥ 560	≥ 30	+20°C ≥ 80

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A		
2,5	300	18,5	55-70		
3,2	350	35,4	65-105		
4,0	350	48,0	100-140		

Hilchrome 2209

Stick electrodes - stainless steel - duplex

AWS A5.4: E 2209-17 EN 1600: E 22 9 3 LR 22

Werkstoffnr, 1,4462

Coating type:

Rutile

Arc voltage: 55V

Approvals:

Current:

∼ =+ =*
*roo

*root pass

Tip colour:

Welding positions:

Printing:

Hilchrome 2209 / E 2209-17

Hilchrome 2209 is our rutile coated electrode for welding ferritic-austenitic duplex steel grades like WNr. 1.4462, UNS 31803. The deposit weld metal offers elevated mechanical strength and toughness, excellent resistance to stress corrosion cracking. Typical applications are found in offshore engineering and chemical, petrochemical, pulp and paper industry where the electrode is used for root and filler passes of tubes and pipes (vertical up position, use DCEN). Hilchrome 2209 is a core wire alloyed all-current (AC/DC) type.

Base materials to be welded:

- UNS Gr. S31803, S31200
- WNr. 1.4462, 1.4463, 1.4460
- Duplex steel grades of similar composition
- Dissimilar joining UNS/WNr. Materials to 1.4583, P235GH, 16Mo3 and similar materials

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
- Construction works
- Repair shopsHeat exchanger industry
- Paper mills
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing	
-	Hilchrome G2209	-	Hilchrome W2209	S2209/HW120	-	

Chemical composition, wt. % weld metal - typical:

onemen composition, it is so them in the state of the sta												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	N	Al
	0,03	0,80	0,90	≤ 0,030	≤ 0,030	22,5	9,0	3,0			0,12	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J +20°C ≥ 47	
As welded	≥ 600	≥ 800	≥ 22		

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A		
2,5	300	16,8	40-75		
3,2	350	32,9	70-110		
4,0	350	47,8	110-140		

AWS A5.11: E NiCrFe3
DIN 1736: EL-NiCr15FeMn
Werkstoffnr. 2.4807

Coating type:

Basic

Arc voltage: 60V

Approvals:

Current:

=+

Tip colour:

Welding positions:

Printing:

Hilchrome 600/E NiCrFe3

Hilchrome 600 is our basic coated DC electrode for welding high-grade nickel-base alloys like Incone® 600. Typical applications include joining and surfacing high-temperature and creep resisting steels, heat resisting and cryogenic materials i.e. cold-tough steels (9% Ni), dissimilar joining and low-alloyed problem steels. Electrode is suitable for usage between -196°C up to +650°C, maximum operating temperature of 1200°C (in a S-free environment), highly resistant to hot cracking. Hilchrome 600 is core wire alloyed.

Base materials to be welded:

- ASTM/AISI Grade Alloy 600/B168, Alloy 75, Alloy 80A
- Inconel® 600, 601, 690 Incoloy® 800
- WNr. 2.4816, 2.4951, 2.4952
- NiCr15Fe and nickel alloys of similar composition
- · Ni-steel up to and including 9% Ni
- Dissimilar joining

Applications:

- Pressure vessel & boiler industry
- Repair shops
- Gas industry (incl. LNG applications)
- Heat exchanger industry
- Paper mills
- Cement industry
- Petrochemical industry

Equivalent product in alternative welding process:

=quiralent preu	p. caact ii. aito: iiaat c ii ciaii.g p. cocco.									
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing					
-	Hilchrome G600	-	Hilchrome W600	-	-					

Chemical composition, wt. % weld metal – typical:

Official composition, w.e. 70 well metal – typical.												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Al
	0,04	6,0	0,40	≤ 0.030	≤ 0.030	16,0	Bal.			2,0	6,0	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values		
	MPa	MPa	Lo=5d - %	ISO-V J		
As welded	≥ 380	≥ 620	≥ 35	+20°C ≥ 80 -196°C ≥ 65		

Notes:

Dia.	Length	Weight (kgs)	Current		
mm.	mm.	1000 pcs.	Α		
2,5	300	15,3	50- 70		
3,2	300	27,4	70-95		
4,0	350	42,6	90-120		

AWS A5.11: E NiCrMo3

DIN 1736: EL-NiCr20Mo9Nb

Werkstoffnr. 2.4621

Coating type:

Basic

Arc voltage: 60V

Approvals:

Current:

=+

Tip colour:

Welding positions:

Printing:

Hilchrome 625 / ENiCrMo-3

Hilchrome 625 is our basic-coated DC electrode for welding corrosion resistant nickel-base alloys like Incone® 625. Typical applications include joining and surfacing high strength-high corrosion resistant Ni-base alloys, 6Mo steels, high-temperature and creep resisting steels, heat resisting and cryogenic materials, joining ferritic to austenitic steels, surfacing unalloyed and low alloyed steels. Electrode is suitable for usage between -196°C up to +1100°C (in a S-free environment), highly resistant to hot cracking. Hilchrome 625 is core wire alloyed.

Base materials to be welded:

- ASTM/AISI Grade Alloy 625, Alloy 825, Alloy 800H
- Inconel® 625, 825, 800H, Alloy G-3, Alloy 20, Alloy 59
- WNr. 1.4876, 1.4529, 1.4539, 2.4858, 2.4856
- NiCr 22 Mo 9 Nb and nickel alloys of similar composition
- 6 Mo steels
- Dissimilar joining

Applications:

- · Shipyards/offshore
- Pressure vessel & boiler industry
- Repair shops
- Gas industry
- Heat exchanger industry
 - Paper mills
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	Hilchrome G625	-	Hilchrome W625	-	-

Chemical composition, wt. % weld metal - typical:

Chemical Composition, W. 70 Well metal Cypical.											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Al
0,03	0,60	0,40	≤ 0.030	≤ 0.030	22,0	Bal.	9,0		3,3	0,6	

Mechanical properties, weld metal - typical:

Г	Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
	As welded	≥ 450	≥ 760	≥ 30	+20°C ≥ 75 -196°C ≥ 45

Notes:

Dia.	Length	Weight (kgs)	Current		
mm.	mm.	1000 pcs.	Α		
2,5	250	14,3	50-70		
3,2	300	28,6	70-95		
4,0	350	51,3	90-120		

AWS A5.11: E NiCu-7 DIN 1736: EL-NiCu 30Mn Werkstoffnr. 2.4366

Coating type:

Basic

Arc voltage: 60V

Approvals:

Current:

=+

Tip colour:

Welding positions:

Printing:

HILCO E NiCu 7

NiCu 7 is our basic coated DC electrode for joining and surfacing nickel-copper alloys like Monel® 400 and nickel-copper clad steels. Typical applications include welding NiCu30Fe (WNr 2.4630) and NiCu30Al (WNr 2.4375) as well as dissimilar joining of steel to copper and steel to copper-nickel alloys. These materials are found in apparatus constructions designed for the chemical and petrochemical industries. A special application field is the fabrication of seawater evaporation plants and marine equipment. NiCu 7 is core wire alloyed.

Base materials to be welded:

- ASTM/AISI Grade Alloy 400, Alloy K500
- Monel® 400, 405
- WNr. 2.4360, 2.4375, 2.4361, 2.4365
- Dissimilar joining Monel® 400 to Nickel 200 and to CuNi alloys 70/30 and 90/10

Applications:

- Shipyards/offshore
- Pressure vessel & boiler industry
- Repair shops
- Heat exchanger industry
- Petrochemical industry
- Marine equipment

Equivalent product in alternative welding process:

SMAW	SMAW GMAW		GTAW	SAW	Gas welding / brazing
-	G NiCu 7	-	W NiCu 7	-	-

Chemical composition, wt. % weld metal - typical:

The state of the s												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Ti
	0,05	3,00	0, 70				Bal.		29,0		1,0	0,7

Note: Al 0,3%

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 300	≥ 450	≥ 30	+20°C ≥ 80

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	300	16,6	55-70
3,2	350	31,3	75-110
4,0	350	47,0	90-130

MAG wires - stainless steel - special purpose

AWS A5.9: ER 307 EN 12072: G 18 8 Mn Werkstoffnr, 1,4370

Wire type: MAG Solid wire Current:

Welding positions:

1_1

Approvals:

Shielding gas: M12-M13 = ArCO₂-ArO₂

Hilchrome G307 is our solid wire for MAG welding dissimilar steels and difficult-to-weld steels. Typical applications include joining 14Mn steels, spring steels, tool steels, high carbon steels. Hilchrome G307 is recommended for buffer layers prior to surfacing. The deposit weld metal features strain hardenability, excellent cavitation resistance, thermal shock resistance and scaling resistance up to 850°C.

Base materials to be welded:

- Armour plate
- · Hardenable steels incl. DFTW-steels
- Non-magnetic austenitic steels
- Work hardening austenitic manganese steels
- · Heat resisting ferritic chromium steels
- Dissimilar ioining

Applications:

- Repair shops
- · Car industry
- Heat exchanger industry
- Cement industry
- Railways
- · Cane sugar industry

Equivalent product in alternative welding process:

SMAW		FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 307R	-	Hilcord 82	Hilchrome W307	S307 / HW 100	•

Chemical composition, wt.% weld metal - typical:

The initial composition, that is the initial control of the initial												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	80,0	7,00	0,80			19,00	9,00					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 320	≥ 600	≥ 35	+20°C ≥ 80

Note: properties under M13 = ArO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Curent A	Voltage V
0,8	BS300	12,5	60-90	18-24
1,0	BS300	15	80-140	18-25
1,2	BS300	15	100-250	18-26
1,6	BS300	15	180-300	20-30

Hilchrome G309L Si

MAG wires - stainless steel - special purpose

AWS A5.9: ER 309LSi EN 12072: G 23 12 LSi Werkstoffnr. 1.4332

Wire type:

MAG Solid wire

Current:

Welding positions:

Approvals:

Shielding gas: M13, ArCO₂

Hilchrome G309L Si is our solid wire for MAG welding corrosion resistant and heat resistant CrNi steels, dissimilar metals and buffering. Typical applications include joining high-strength steels, un- and low alloyed heat treatable steels, stainless, ferritic chromium and austenitic chrome-nickel steels, austenitic manganese steels. Hilchrome G309L Si is suitable for joining clad steels. The FN content (FN ~16) ensures good cracking resistance.

Base materials to be welded:

- High strength, unalloyed and alloyed heat treatable steels; stainless, ferritic chromium and austenitic CrNi steels; austenitic manganese steels
- Chemically resistant weld claddings ranging from ferritic-pearlitic steels to fine grain steels, incl. high temperature fine grain steels
- Dissimilar joining

Applications:

- · Pressure vessel & boiler industry
- · Repair shops
- Gas industry
- Cane sugar mills
- Cement industry
- Petrochemical industry
- · Mine industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 309R	-	Hilcord 85	Hilchrome W309L Si	S309L / HW 120	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	P	Cr	Ni	Мо	Cu	Nb	٧	Al
0,03	2,00	0,90			24,0	13,0				,	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 400	≥ 550	≥ 30	+20°C ≥ 55

Note: properties under M13 = ArO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
0,8	BS300	12,5	60-90	18-24
1,0	BS300	15	80-140	18-25
1,2	BS300	15	100-250	18-26
1,6	BS300	15	180-300	20-30

MAG wires - stainless steel - special purpose

AWS A5.9: ER 312 EN 12072: G 29 9 Werkstoffnr, 1,4337

Wire type: MAG Solid wire Current:

Welding positions:

1_,

Approvals:

Shielding gas: M12-M13 = ArCO₂-ArO₂

Hilchrome G312 is our solid wire for MAG welding which is to be considered as a problem solver for all kinds of steel grades incl. stainless and difficult-to-weld steels. Typical applications for this WELD-ALL include joining hard manganese steels, tool steels, spring steels, buffering as well as joining dissimilar steel grades. Hilchrome G312 deposits a crack-resistant weld metal with an increased ferrite content of approx. FN50.

Base materials to be welded:

- High strength, unalloyed and alloyed heat treatable steels; stainless, ferritic chromium and austenitic CrNi steels; austenitic manganese steels
- Chemically resistant weld claddings ranging from ferritic-pearlitic steels to fine grain steels, incl. high temperature fine grain steels
- Dissimilar joining

Applications:

- Pressure vessel & boiler industry
- Repair shops
- Gas industry
- · Cane sugar mills
- Cement industry
- Petrochemical industry
- Mine industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 312R	-	-	Hilchrome W312	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn		Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,15	1,60)	0,50			30,0	9,0					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values		
	MPa	MPa	Lo=5d - %	ISO-V J		
As welded	≥ 500	≥ 750	≥ 20	+20°C ≥ 30		

Note: properties under M13 = ArO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V	
1,0	BS300	15	80-140	18-25	
1,2	BS300	15	100-250	18-26	

Hilchrome G308L Si

MAG wires - stainless steel - acid resistant

AWS A5.9: ER 308LSi EN 12072: G 19 9 LSi Werkstoffnr, 1,4316

Wire type:

MAG Solid wire

Current:

Welding positions:

Approvals: CL, TüV

Shielding gas:

 ΓUV M12-M13 = ArCO₂-ArO₂

Hilchrome G308L Si is our solid wire for MAG welding low carbon 18Cr10Ni austenitic stainless steel grades like AISI 304, 304L. Typical applications include all industries where similar materials (incl. higher carbon types) as well as ferritic 13% Cr steels are used. Hilchrome G308L Si is also suitable for Nb (Cb) or Ti stabilised grades 347 and 321. Weld metal has an excellent resistance to general and intergranular corrosion (up to 350°C), good resistance to oxidising acids and cold reducing acids.

Base materials to be welded:

- ASTM/AISI Grade 302, 304, 304L, 304LN, 321, 347
- WNr 1.4306, 1.4301, 1.4541, 1.4550, 1.4311, 1.4300
- CrNi 18 10 and similar stainless steel grades

Applications:

- Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- Office furniture industry
- · Food processing industry
- Petrochemical industry
- Dairy & cold storage industry

Equivalent product in alternative welding process:

SMAW GMAV		FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 308R	-	Hilcord 81	Hilchrome W308L Si	S308L/HW100	-

Chemical composition, wt.% weld metal - typical:

С	Mn	l	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,02	1,70)	0,90			20,0	10,0					

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded			≥ 30	+20°C ≥ 80 -196°C ≥ 35

Note: properties under M13 = ArO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
0,8	BS300	12,5	60-90	18-24
1,0	BS300	15	80-140	18-25
1,2	BS300	15	100-250	18-26
1,6	BS300	15	180-300	20-30

Hilchrome G316L Si

MAG wires - stainless steel - acid resistant

AWS A5.9: ER 316LSi EN 12072: G 19 12 3 LSi Werkstoffnr. 1.4430

Wire type: MAG Solid wire Current:

Welding positions:

Approvals: CL, LR, TüV Shielding gas: M12-M13 = ArCO₂-ArO₂

Hilchrome G316L Si is our solid wire for MAG welding low carbon 17Cr12Ni3Mo austenitic acid resistant stainless steel grades like AISI 316, 316L. Universal in applications but typical for all industries where superior corrosion resistance is required: textile industry, paper mills, chemical industry, cellulose industry etc., resistance to general and intergranular corrosion (up to 400°C), good resistance to hot cracking.

Base materials to be welded:

- ASTM/AISI Gr. 316, 316L, 316LN, 316Cb, 316Ti
- WNr 1.4583, 1.4435, 1.4436, 1.4404, 1.4401, 1.4571 1.4580, 1.4406*, 1.4429*
 - * without postweld quenching
- CrNiMo 17 12 3 and similar stainless steel grades

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
- Construction works
- Repair shops
- · Paper mills
- Cellulose & textile industry
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW GMA		FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 316R	-	Hilcord 83	Hilchrome W316L Si	S316L/HW100	

Chemical composition, wt.% weld metal - typical:

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,02	1,70	0,80			18,8	12,5	2,8				

Mechanical properties, weld metal - typical:

moonamear propertie	o, mora mota. typican					
Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J		
As welded	≥ 320	≥ 550	≥ 35	+20°C ≥ 80 -120°C ≥ 35		

Note: properties under M13 =ArO₂ gas shielding

<u> </u>	a moranig aasar			
Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
0,8	BS300	12,5	60-90	18-24
1,0	BS300	15	80-140	18-25
1,2	BS300	15	100-250	18-26
1,6	BS300	15	180-300	20-30

MAG wires - stainless steel - duplex

AWS A5.9: ER 2209 EN 12072: G 22 9 3 L Werkstoffnr, 1,4462

Wire type: MAG Solid wire Welding Current:

=+

Welding positions:

Approvals: Shielding gas:

 $M12-M13 = ArCO_2-ArO_2$

Hilchrome G2209 is our solid wire for MAG welding ferritic-austenitic duplex steel grades like WNr. 1.4462, UNS 31803. The deposit weld metal offers elevated mechanical strength and toughness, excellent resistance to stress corrosion cracking. Typical applications are found in offshore engineering and chemical, petrochemical, pulp and paper industry.

Base materials to be welded:

- UNS Gr. S31803, S31200
- WNr. 1.4462, 1.4463, 1.4460
- Duplex steel grades of similar composition
- Dissimilar joining UNS/WNr. Materials to 1.4583, P235GH. 16Mo3 and similar materials

Applications:

- Shipyards/offshore
- Pressure vessel & boiler industry
 - Construction works
- · Repair shops
- Heat exchanger industry
- Paper mills
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing	
Hilchrome 2209	-	-	Hilchrome W2209	S2209/HW120	-	

Chemical composition, wt.% weld metal - typical:

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	N	٧	Al
	0,025	1,60	0,50			23,0	9,0	3,00		0,14		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 480	≥ 680	≥ 22	+20°C ≥ 50

Note: properties under M13 =ArO₂ gas shielding

Ī	Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V	
Γ	1,0	BS300	15	80-140	18-25	
Γ	1,2	BS300	15	100-250	18-26	

MIG wires - stainless steel - nickel base

AWS A5.14: ER NiCr-3

DIN 1736: MSG-NiCr 20 Nb

Werkstoffnr. 2.4806

Wire type: MIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas:

I1 = Pure Ar, ArHeCO₂ (special mixed gas)

Hilchrome G600 is our solid wire for MIG welding high-grade nickel-base alloys like Inconel® 600. Typical applications include joining and surfacing high-temperature and creep resisting steels, heat resisting and cryogenic materials i.e. cold-tough steels (9% Ni), dissimilar joining and low-alloyed problem steels. Hilchrome G600 is suitable for usage between -196°C up to +650°C, maximum operating temperature of 1200°C (in a S-free environment), highly resistant to hot cracking.

Base materials to be welded:

- ASTM/AISI Grade Alloy 600/B168, Alloy 75, Alloy 80A
- Inconel® 600, 601, 690 Incoloy® 800
- WNr. 2.4816, 2.4951, 2.4952
- NiCr15Fe and nickel alloys of similar composition
- Ni-steel up to and including 9% Ni
- Dissimilar joining

Applications:

- Pressure vessel & boiler industry
- Repair shops
- Gas industry (incl. LNG applications)
- Heat exchanger industry
- Paper mills
- Cement industry
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW GMAW		FCAW	GTAW	SAW	Gas welding / brazing	
Hilchrome 600	-	ı	Hilchrome W600	ı	=	

Chemical composition, wt.% weld metal - typical:

		, ,			71							
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Ti	
0,10	2,80	0,50	≤ 0,015	≤ 0,030	20,0	Bal.			2,50	3,00	0,80	

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J		
As welded	≥ 400	≥ 640	≥ 35	+20°C ≥ 150 -196°C <u>></u> 40		

Note: properties under pure Argon gas shielding

Dia.	Length	Weight / package kg.	Current	Voltage
mm.	mm.		A	V
1,2	BS300	15	100-250	18-26

MIG wires - stainless steel - nickel base

AWS A5.14: ER NiCrMo 3

DIN 1736: MSG-NiCr21Mo9Nb

Werkstoffnr. 2.4831

Wire type:

MIG Solid wire

Current:

=+

Welding positions:

Approvals:

Shielding gas:

I1 = Pure Ar, ArHeCO₂ (special mixed gas)

Hilchrome G625 is our solid wire for MIG welding corrosion resistant nickel-base alloys like Incone® 625. Typical applications include joining and surfacing high strength-high corrosion resistant Ni-base alloys, 6Mo steels, high-temperature and creep resisting steels, heat resisting and cryogenic materials, joining ferritic to austenitic steels, surfacing unalloyed and low alloyed steels. Hilchrome G625 is suitable for usage between -196°C up to +1100°C (in a S-free environment), highly resistant to hot cracking.

Base materials to be welded:

- ASTM/AISI Grade Alloy 625, Alloy 825, Alloy 800H
- Inconel® 625, 825, 800H, Alloy G-3, Alloy 20, Alloy 59
- WNr. 1.4876, 1.4529, 1.4539, 2.4858, 2.4856
- NiCr 22 Mo 9 Nb and nickel alloys of similar composition
- 6 Mo steels
- Dissimilar joining

Applications:

- · Shipyards/offshore
- · Pressure vessel & boiler industry
- Repair shops
- Gas industry
- Heat exchanger industry
- Paper mills
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW GMA		FCAW	GTAW	SAW	Gas welding / brazing	
Hilchrome 625	Hilchrome 625 -		Hilchrome W625	•	-	

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Ti
0,10	0,50	0,50	≤ 0,015	≤ 0,015	22,00	bal.	9,00		3,50	5,0	0,30

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values		
	MPa	MPa	Lo=5d - %	ISO-V J		
As welded	≥ 420	≥ 720	≥ 27	+20°C ≥ 100 -196°C <u>></u> 80		

Note: properties under pure Argon gas shielding

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	A	V
1,2	BS300	15	100-250	18-26

AWS A5.14: ER NiCu-7 DIN 1736: MSG-NiCu30MnTi

Werkstoffnr, 2,4377

Wire type:

MIG Solid wire

Current:

Welding positions:

Approvals: Shielding gas:

I1 = Pure Ar, ArHeCO₂ (special mixed gas)

G NiCu7 is our solid wire for MIG welding nickel-copper alloys like Mone® 400 and nickel-copper clad steels. Typical applications include welding NiCu30Fe (WNr 2.4630) and NiCu30AI (WNr 2.4375) as well as dissimilar joining of steel to copper and steel to copper-nickel alloys. These materials are found in apparatus constructions designed for the chemical and petrochemical industries. A special application field is the fabrication of seawater evaporation plants and marine equipment.

Base materials to be welded:

- ASTM/AISI Grade Alloy 400, Alloy K500
- Monel® 400, 405
- WNr. 2.4360, 2.4375, 2.4361, 2.4365
- Dissimilar joining Monel® 400 to Nickel 200 and to CuNi alloys 70/30 and 90/10

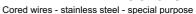
Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
- Repair shops
- Heat exchanger industry
- Petrochemical industry
- Marine equipment

Equivalent product in alternative welding process:

SMAW	GMAW FCAW		GTAW	SAW	Gas welding / brazing	
NiCu7	-	-	W NiCu7	-	-	

Chemical composition, wt.% weld metal - typical:


one mean composition, wt. 70 werd metal - typical.												
	C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Ti
	0,15	3,50	1,20	≤ 0,015	≤ 0,020		65,0		Bal.		2,50	2,20

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 300	≥ 500	≥ 35	+20°C ≥ 150

Note: properties under pure Argon gas shielding

	Dia. mm.	Length mm.	Weight / package kg.	Current A	Voltage V
1	1,2	BS300	15	100-250	18-26

AWS A5.22: E 307 T0-G

EN 12073: T 18 8 Mn R M 3

Werkstoffnr. 1.4316

Wire type:

Rutile cored wire

Current:

=+

Welding positions:

Approvals:

Shielding gas: M21 = ArCO₂

Hilcord 82 is our rutile flux cored wire for MAG welding dissimilar steels and difficult-to-weld steels. Typical applications include joining 14Mn steels, spring steels, tool steels, high carbon steels. Hilcord 82 is recommended for buffer layers prior to surfacing. The deposit weld metal features strain hardenability, excellent cavitation resistance, thermal shock resistance and scaling resistance up to 850°C.

Base materials to be welded:

- Armour plate
- · Hardenable steels incl. DFTW-steels
- Non-magnetic austenitic steels
- Work hardening austenitic manganese steels
- · Heat resisting ferritic chromium steels
- Dissimilar ioining

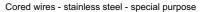
Applications:

- Repair shops
- · Car industry
- Heat exchanger industry
- Cement industry
- Railways
- · Cane sugar industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 307R	Hilchrome G307	-	Hilchrome W307	S307 / HW 100	-

Chemical composition, wt.% weld metal - typical:

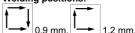

 The initial composition, it is to the initial composition.											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	7,0	0,70			17,5	8,5					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 450	≥ 630	≥ 35	+20°C ≥ 60
				Hardness 160 HB,
				450HB after deformation

Note: properties under M21= ArCO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
1,2	B300	15	160-200	25-29



AWS A5.22: E 309LT1-4 (0,9 mm) / E 309L T 0-4 (1,2 mm) AWS A5.22: E 309LT1-1 (0,9 mm) / E 309LT0-1 (1,2 mm) EN 12073: T 23 12 LPM1 (0,9 mm) / T 23 12 LRM3 (1,2 mm) EN 12073: T 23 12 LPC1 (0,9 mm) / T 23 12 LRC3 (1,2 mm)

Wire type: Rutile cored wire Current:

Welding positions:

Approvals:

Shielding gas:

 $T\ddot{u}V$ $C1 = CO_2$, $M21 = ArCO_2$

Hilcord 85 is our rutile flux cored wire for MAG welding corrosion resistant and heat resistant CrNi steels, dissimilar metals and buffering. Typical applications include joining high-strength steels, un- and low alloyed heat treatable steels, stainless, ferritic chromium and austenitic chrome-nickel steels, austenitic manganese steels. Hilcord 85 is suitable for joining clad steels. The FN content (FN ~16) ensures good cracking resistance. Size 0,9 mm is suited for welding thin metal sheets (≥ 1,5 mm) in all positions (≥ 5 mm plate thickness).

Base materials to be welded:

- High strength, unalloyed and alloyed heat treatable steels; stainless, ferritic chromium and austenitic CrNi steels; austenitic manganese steels
- Chemically resistant weld claddings ranging from ferritic-pearlitic steels to fine grain steels, incl. high temperature fine grain steels
- Dissimilar joining

Applications:

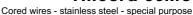
- · Pressure vessel & boiler industry
- Repair shops
- Gas industry
- Cane sugar mills
- Cement industry
- Petrochemical industry
- · Mine industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 309R	Hilchrome G309L Si	-	Hilchrome W309L Si	S309L / HW 120	

Chemical composition, wt.% weld metal - typical:

The initial composition, the formation typical.											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
≤ 0,03	1,60	0,60			22,8	12,5					

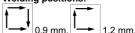

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 350	≥ 520	≥ 30	+20°C ≥ 47

Notes: properties under M21 = ArCO₂ gas shielding

Dia. nm.	Spooltype	Weight / spool kg.	Current A	Voltage V	
0,9	BS300	12,5	100-160	22-32	
1,2	BS300	15	120-280	22-32	

Hilcord 85Mo


AWS A5.22: E 309MoLT1-4 (0,9 mm) / E 309MoL T 0-4 (1,2 mm) AWS A5.22: E 309MoLT1-1 (0,9 mm) / E 309MoL T 0-1 (1,2 mm) EN 12073: T 23 12 2 LPM1 (0,9 mm) / T 23 12 2 LRM3 (1,2 mm) EN 12073: T 23 12 2 LPC1 (0,9 mm) / T 23 12 2 LRC3 (1,2 mm)

Wire type:

Rutile cored wire

Current:

Welding positions:

Approvals:

Shielding gas:

 $T\ddot{u}V$ $C1 = CO_2$, $M21 = ArCO_2$

Hilcord 85 is our rutile flux cored wire for MAG welding similar and dissimilar steels, buffering, joining hardenable and difficult-to-weld steels. Typical applications include joining high strength steels, un- and low alloyed structural steels and heat treatable steels. Hilcord 85 is suitable for joining clad steels. The Mo-alloyed electrode has an increased FN content (FN ~20) which ensures maximum cracking resistance. Size 0,9 mm is suited for welding thin metal sheets (≥ 1,5 mm) in all positions (≥ 5 mm plate thickness).

Base materials to be welded:

- Similar and dissimilar joining high strength, unalloyed and alloyed structural steels and heat treatable steels
- Un- and low alloyed boiler steels, CrNi(Mo) steels
- Combinations between ferritic and austenitic steels
- First layer in CrNiMo claddings AISI 316L and similar austenitic stainless steels
- · Dissimilar joining

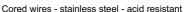
Applications:

- Pressure vessel & boiler industry
- · Repair shops
- Gas industry
- Cane sugar mills
- Cement industry
- Petrochemical industry
- · Mine industry

Equivalent product in alternative welding process:

Equivalent product if	Equivalent product in diternative welding process:									
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing					
Hilchrome 309MoR	-		Hilchrome W309LMo	-	-					

Chemical composition, wt.% weld metal - typical:

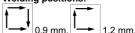

Officialica	one mear composition, wit 70 werd metal - typical.											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al	
≤ 0.03	1,40	0,70			22,7	12,5	2,8					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 450	≥ 550	≥ 25	+20°C ≥ 47

Note: properties under M21 = ArCO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
0,9	BS300	12,5	100-160	22-32
1,2	BS300	15	120-280	22-32



AWS A5.22: E 308L T 1-4 (0,9 mm) / E 308 LT 0-4 (1,2 mm) AWS A5.22: E 308L T 1-1 (0,9 mm) / E 308L T 0-1 (1,2 mm) EN 12073: T 19 9 LPM1 (0,9 mm) / T 19 9 LRM3 (1,2 mm) EN 12073: T 19 9 LPC1 (0,9 mm) / T 19 9 LRC3 (1,2 mm)

Wire type: Rutile cored wire Current:

Welding positions:

Approvals: TüV

Shielding gas:

 $C1 = CO_2$, $M21 = ArCO_2$

Hilcord 81 is our rutile flux cored wire for MAG welding low carbon 18Cr10Ni austenitic stainless steel grades like AISI 304, 304L. Typical applications include all industries where similar materials (incl. higher carbon types) as well as ferritic 13% Cr steels are used. Hilcord 81 is also suitable for Nb (Cb) or Ti stabilised grades 347 and 321. Weld metal has an excellent resistance to general and intergranular corrosion (up to 350°C), good resistance to oxidising acids and cold reducing acids. Size 0,9 mm is suited for welding thin metal sheets ≥ 1,5 mm) in all positions.

Base materials to be welded:

- ASTM/AISI Grade 302, 304, 304L, 304LN, 321, 347
- WNr 1.4306, 1.4301, 1.4541, 1.4550, 1.4311, 1.4300
- CrNi 18 10 and similar stainless steel grades

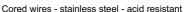
Applications:

- · Shipyards/offshore
- · Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- Office furniture industry
- · Food processing industry
- · Petrochemical industry
- · Dairy and cold storage industry

Equivalent product in alternative welding process:

	SMAW			GTAW	SAW	Gas welding / brazing
Н	ilchrome 308R	Hilchrome W308L Si	-	Hilchrome W308L Si	S308L/HW100	-

Chemical composition, wt.% weld metal - typical:

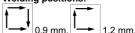

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
< 0,03	1,50	0,60			20,0	10,5					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 350	≥ 520	≥ 35	+20°C ≥ 47 -196°C ≥ 32

Note: properties under M21 = ArCO₂ gas shielding

Dia. Spooltype mm.		Weight / spool kg.	Current A	Voltage V	
0,9	BS300	12,5	100-160	22-32	
1.2	BS300	15	120-280	22-32	


AWS A5.22: E 316L T 1-4 (0,9 mm) / E 316L T 0-4 (1,2 mm) AWS A5.22: E 316L T 1-1 (0,9 mm) / E 316L T 0-1 (1,2 mm) EN 12073: T 19 12 3 LPM1 (0,9 mm) / T 19 12 3 LRM3 (1,2 mm) EN 12073: T 19 12 3 LPC1 (0,9 mm) / T 19 12 3 LRC3 (1,2 mm)

Wire type:

Rutile cored wire

Current:

Welding positions:

Approvals: TüV Shielding gas:

 $C1 = CO_2$, $M21 = ArCO_2$

Hilcord 83 is our rutile flux cored wire for MAG welding low carbon 17Cr12Ni3Mo austenitic acid resistant stainless steel grades like AISI 316, 316L. Universal in applications but typical for all industries where superior corrosion resistance is required: textile industry, paper mills, chemical industry, cellulose industry etc., resistance to general and intergranular corrosion (up to 400°C), good resistance to hot cracking. Size 0,9 mm is suited for welding thin metal sheets (≥ 1,5 mm) in all positions (≥ 5 mm plate thickness).

Base materials to be welded:

- ASTM/AISI Gr. 316, 316L, 316LN, 316Cb, 316Ti
- WNr 1.4583, 1.4435, 1.4436, 1.4404, 1.4401, 1.4571 1.4580, 1.4406*, 1.4429*
 * without postweld quenching
- CrNiMo 17 12 3 and similar stainless steel grades

Applications:

- · Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- Cellulose & textile industry
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 316R	Hilchrome W316L Si	-	Hilchrome W316L Si	S316L/HW100	-

Chemical composition, wt.% weld metal - typical:

 onemous composition, mary moral moral typicals											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
≤ 0,03	1,50	0,60			19,0	12,0	2,8				

Mechanical properties, weld metal - typical:

Condition	Condition 0,2% Yield strength MPa		Elongation Lo=5d - %	Impact Values ISO-V J	
As welded	≥ 350	≥ 510	≥ 30	+20°C ≥ 47 -120°C ≥ 32	

Notes: properties under M21 = ArCO₂ gas shielding

Dia.	Length	Weight /	Current	Voltage
mm.	mm.	package kg.	Α	V
0,9	BS300	12,5	100-160	22-32
1,2	BS300	15	120-280	22-32

AWS A5.22: E 316L T 1-4 / E 316L T 1-1 EN 12073: T 19 12 3 LPM1 / T 19 12 3 LPC1

Wire type: Rutile cored wire Current:

Welding positions:

Approvals:

Shielding gas:

 $T\ddot{u}V$ $C1 = CO_2$, $M21 = ArCO_2$

Hilcord 83LT-1 is our rutile flux cored wire for all position MAG welding low carbon 17Cr12Ni3Mo austenitic acid resistant stainless steel grades like AISI 316, 316L. Typical applications include all industries where superior corrosion resistance is required: textile industry, paper mills, chemical industry, cellulose industry etc., resistance to general and intergranular corrosion (up to 400°C), good resistance to hot cracking.

Base materials to be welded:

- ASTM/AISI Gr. 316, 316L, 316LN, 316Cb, 316Ti
- WNr 1.4583, 1.4435, 1.4436, 1.4404, 1.4401, 1.4571 1.4580, 1.4406*, 1.4429*
 - * without postweld quenching
- CrNiMo 17 12 3 and similar stainless steel grades

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- · Cellulose & textile industry
- Petrochemical industry

Equivalent product in alternative welding process:

Ī	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
I	Hilchrome 316R	Hilchrome W316L Si	-	Hilchrome W316L Si	S316L/HW100	-

Chemical composition, wt.% weld metal - typical:

Chemical Composition, Ways Weld Metal Typican											
၁	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
≤ 0,03	1,40	0,70			18,8	12,0	2,7				

Mechanical properties, weld metal - typical:

Condition 0,2% Yield strength MPa		Tensile strength	Elongation	Impact Values	
		MPa	Lo=5d - %	ISO-V J	
As welded	≥ 350	≥ 510	≥ 30	+20°C ≥ 47 -120°C ≥ 32	

Note: properties under M21 = ArCO₂ gas shielding

1	Dia.	Length	Weight /	Current	Voltage
	mm.	mm.	package kg.	Α	V
1	1,2	BS300	15	120-280	22-32

TIG rods - stainless steel - special purpose

AWS A5.9: ER 307 EN 12072: W 18 8 Mn Werkstoffnr, 1,4370

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W307 is our solid wire for TIG welding dissimilar steels and difficult-to-weld steels. Typical applications include joining 14Mn steels, spring steels, tool steels, high carbon steels. Hilchrome W307 is recommended for buffer layers prior to surfacing. The deposit weld metal features strain hardenability, excellent cavitation resistance, thermal shock resistance and scaling resistance up to 850°C. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- · Armour plate
- · Hardenable steels incl. DFTW-steels
- Non-magnetic austenitic steels
- · Work hardening austenitic manganese steels
- · Heat resisting ferritic chromium steels
- Dissimilar ioining

Applications:

- Repair shops
- · Car industry
- Heat exchanger industry
- Cement industry
- Railways
- Cane sugar industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 307R	Hilchrome G307	Hilcord 82	-	S 307 / HW 100	•

Chemical composition, wt.% weld metal - typical:

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0.08	7.00	0.80			19.00	9.00					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 320	≥ 600	≥ 35	+20°C ≥ 80

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5

Hilchrome W309L

TIG rods - stainless steel - special purpose

AWS A5.9: ER 309L EN 12072: W 23 12 L Werkstoffnr, 1,4332

Wire type:

TIG Solid wire

Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W309L is our solid wire for TIG welding corrosion resistant and heat resistant CrNi steels, joining dissimilar metals and buffering. Typical applications include joining high-strength steels, un- and low alloyed heat treatable steels, stainless, ferritic chromium and austenitic chrome-nickel steels, austenitic manganese steels. Hilchrome W309L is suitable for joining clad steels. The FN content (FN ~16) ensures good cracking resistance. To be used in combination with tungsten electrodes type WT20.

Base materials to be welded:

- High strength, unalloyed and alloyed heat treatable steels; stainless, ferritic chromium and austenitic CrNi steels; austenitic manganese steels
- Chemically resistant weld claddings ranging from ferritic-pearlitic steels to fine grain steels, incl. high temperature fine grain steels
- Dissimilar joining

Applications:

- · Pressure vessel & boiler industry
- Repair shops
- · Gas industry
- Cane sugar mills
- Cement industry
- Petrochemical industry
- . Mine industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 309R	Hilchrome W309L	Hilcord 85	-	S309L / HW 120	-

Chemical composition, wt.% weld metal - typical:

1	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,03	2,00	0,40			24,0	13,0					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 400	≥ 550	≥ 30	+20°C ≥ 55

Notes: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3.0	1000	5

Hilchrome W309L Si

TIG rods - stainless steel - special purpose

AWS A5.9: ER 309LSi EN 12072: W 23 12 L Si Werkstoffnr. 1.4332

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W309L Si is our solid wire for TIG welding corrosion resistant and heat resistant CrNi steels, joining dissimilar metals and buffering. Typical applications include joining high-strength steels, un- and low alloyed heat treatable steels, stainless, ferritic chromium and austenitic chrome-nickel steels, austenitic manganese steels. Hilchrome W309L Si is suitable for joining clad steels. The FN content (FN ~16) ensures good cracking resistance. To be used in combination with tungsten electrodes type WT20.

Base materials to be welded:

- High strength, unalloyed and alloyed heat treatable steels; stainless, ferritic chromium and austenitic CrNi steels; austenitic manganese steels
- Chemically resistant weld claddings ranging from ferritic-pearlitic steels to fine grain steels, incl. high temperature fine grain steels
- Dissimilar joining

Applications:

- · Pressure vessel & boiler industry
- · Repair shops
- Gas industry
- · Cane sugar mills
- Cement industry
- Petrochemical industry
- Mine industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 309R	Hilchrome W309L Si	Hilcord 85	-	S309L / HW 120	

Chemical composition, wt.% weld metal - typical:

С	Mn		Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,03	2,00)	0,90			24,0	13,0					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 400	≥ 550	≥ 30	+20°C ≥ 55

Notes: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5

Hilchrome W309LMo

TIG rods - stainless steel - special purpose

AWS A5.9: ER 309LMo EN 12072: W 23 12 2 L Si Werkstoffnr. 1.4459

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W309LMo is our solid wire for TIG welding hardenable and difficult-to-weld steels, dissimilar joining and buffering. Typical applications include joining high strength steels, un- and low alloyed structural steels and heat treatable steels. Hilchrome W309LMo is suitable for joining clad steels. The Mo-alloyed TIG rod has an increased FN content (FN ~20) ensuring maximum cracking resistance. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Similar and dissimilar joining high strength, unalloyed and alloyed structural steels and heat treatable steels
- Un- and low alloyed boiler steels, CrNi(Mo) steels
- Combinations between ferritic and austenitic steels
- First layer in CrNiMo claddings AISI 316L and similar austenitic stainless steels
- · Dissimilar joining

Applications:

- Pressure vessel & boiler industry
- Repair shops
- Gas industry
- · Cane sugar mills
- Cement industry
- Petrochemical industry
- Mine industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 309MoR	-	Hilcord 85Mo	-	-	-

Chemical composition, wt.% weld metal - typical:

ſ	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
I	0,03	1,80	0,80			23,50	13,50	2,80				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 400	≥ 550	≥ 30	+20°C ≥ 100

Note: properties under pure Argon gas shielding

i dokaging data.								
Dia.	Length	Weight /						
mm.	mm.	package kg.						
2 4	1000	5						

TIG rods - stainless steel - special purpose

AWS A5.9: ER 312 EN 12072: W 29 9 Werkstoffnr, 1,4337

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W312 is our solid wire for TIG welding which is to be considered as a problem solver for all kinds of steel grades incl. stainless and difficult-to-weld steels. Typical applications for this WELD-ALL include joining hard manganese steels, tool steels, spring steels, buffering as well as joining dissimilar steel grades. Hilchrome W312 deposits a crack-resistant weld metal with an increased ferrite content of approx. FN50. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Armour plate
- · Hardenable steels incl. DFTW-steels
- Tool, die and spring steels
- · Austenitic manganese steels
- · Hardfacing clutches, gear wheels, shafts
- Buffer layers prior to hardfacing
- Dissimilar joining

Applications:

- Repair shops
- Cement industry
- Steel mills
- Mine industryRailways
- Cane sugar mills

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 312R	Hilchrome G312	-		-	

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,15	1,60	0,50			30,0	9,0					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 500	≥ 750	≥ 20	+20°C ≥ 30

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
2,0	1000	5
2,4	1000	5

Hilchrome W308L Si

TIG rods - stainless steel - acid resistant

AWS A5.9: ER 308LSi EN 12072: W 19 9 L Si Werkstoffnr. 1.4316

Wire type:

TIG Solid wire

Current:

Welding positions:

Approvals: CL, TüV Shielding gas: 11 = Pure Ar

Hilchrome W308L Si is our solid wire for TIG welding low carbon 18Cr10Ni austenitic stainless steel grades like AISI 304, 304L. Typical applications include all industries where similar materials (incl. higher carbon types) as well as ferritic 13% Cr steels are used. Hilchrome W308L Si is also suitable for Nb (Cb) or Ti stabilised grades 347 and 321. Weld metal has an excellent resistance to general and intergranular corrosion (up to 350°C), good resistance to oxidising acids and cold reducing acids. To be used in combination with tungsten electrodes type WT20, WC20.

Base materials to be welded:

- ASTM/AISI Grade 302, 304, 304L, 304LN, 321, 347
- WNr 1.4306, 1.4301, 1.4541, 1.4550, 1.4311, 1.4300
- CrNi 18 10 and similar stainless steel grades

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
 - Construction works
- Repair shops
- Paper mills
- Office furniture industry
- Food processing industry
- Petrochemical industry
- Dairy and cold storage industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 308R	Hilchrome G308L Si	Hilcord 81		S308L/HW100	-

Chemical composition, wt.% weld metal - typical:

С	Mn		Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,02	1,70)	0,90			20,0	10,0					

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 320	≥ 550	≥ 30	+20°C ≥ 80 -196°C <u>></u> 35

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
		package kg.
1,0	1000	5
1,2	1000	5
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5
4,0	1000	5

Hilchrome W347 Si

TIG rods - stainless steel - acid resistant

AWS A5.9: ER 347 Si EN 12072: W 19 9 Nb Si Werkstoffnr, 1,4551

Wire type:

TIG olid wire

Current:

=-

Welding positions:

Approvals: TüV Shielding gas: 11 = Pure Ar

Hilchrome W347 Si is our stabilised wire for TIG welding low carbon 18Cr10NiNb (Cb) austenitic stainless steel grades like AISI 347, 321. Typical applications include all industries where similar materials (incl. higher carbon types) as well as ferritic 13% Cr steels are used. Hilchrome W347Si is also suitable for unstabilised grades 304 and 304L. Weld metal has an excellent resistance to general and intergranular corrosion (up to 400°C). To be used in combination with tungsten electrodes WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- ASTM/AISI Grade 347, 321, A 296 CF8C, 304, A157 C9, A320 B 8 C and D, 304LN, 302
- WNr. 1.4550, 1.4541, 1.4552, 1.4301, 1.4312, 1.4878, 1.6905, 1.4311, 1.4306, 1.4300
- Stabilised CrNiNb 18 10 and similar stainless steel grades

Applications:

- · Shipyards/offshore
- · Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- Office furniture industry
- · Food processing industry
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 347R	-	1	Hilchrome G347 Si	ı	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,06	1,50	0,80			19,5	9,50			12xC		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 380	≥ 550	≥ 30	+ 20°C ≥ 100

Note: properties under pure Argon gas shielding

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5
4,0	1000	5

Hilchrome W316L Si

Welding positions:

TIG rods - stainless steel - acid resistant

AWS A5.9: ER 316LSi EN 12072: W 19 12 3 L Si Werkstoffnr, 1,4430

Wire type:

TIG Solid wire

Current:

Shielding gas:

Approvals: CL, TüV I1 = Pure Ar

Hilchrome W316L Si is our solid wire for TIG welding low carbon 17Cr12Ni3Mo austenitic acid resistant stainless steel grades like AISI 316, 316L. Universal in applications but typical for all industries where superior corrosion resistance is required: textile industry, paper mills, chemical industry, cellulose industry etc., resistance to general and intergranular corrosion (up to 400°C), good resistance to hot cracking. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- ASTM/AISI Gr. 316, 316L, 316LN, 316Cb, 316Ti
- WNr 1.4583, 1.4435, 1.4436, 1.4404, 1.4401, 1.4571 1.4580, 1.4406*, 1.4429*
 - * without postweld quenching
- CrNiMo 17 12 3 and similar stainless steel grades

Applications:

- Shipyards/offshore
- Pressure vessel & boiler industry
 - Construction works
- Repair shops
- Paper mills
- Cellulose & textile industry
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 316R	Hilchrome G316L Si	Hilcord 83		S316L/HW100	

Chemical composition, wt.% weld metal – typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,02	1,70	0,80			18,8	12,5	2,8				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 320	≥ 550	≥ 35	+20°C ≥ 80 -120°C <u>></u> 35

Notes: properties under pure Argon gas shielding

Dia.	Length	Weight /
mm.	mm.	package kg.
1,0	1000	5
1,2	1000	5
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5
4,0	1000	5

Hilchrome W318 Si

TIG rods - stainless steel - acid resistant

AWS A5.9: ER 318Si EN 12072: W 19 12 3 Nb Si Werkstoffnr, 1,4576

Wire type: TIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W318 Si is our stabilised wire for TIG welding low carbon 17Cr12Ni3MoNb austenitic acid resistant stainless steel grades like AISI 318. Typical applications include all industries where superior corrosion resistance is required: textile industry, paper mills, chemical industry, cellulose industry etc., resistance to general and intergranular corrosion (up to 400°C), good resistance to hot cracking. To be used in combination with tungsten electrodes WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- ASTM/AISI Gr. 316, 316L, 316Cb, 316Ti
- WNr 1.4571, 1.4580, 1.4401, 1.4581, 1.4410, 1.6905, 1.4583, 1.4436
- Stabilised CrNiMoNb 17 12 3 and similar stainless steel grades

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- · Cellulose & textile industry
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 318R		-	-	-	-

Chemical composition, wt.% weld metal – typical:

1	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0.05	1.50	0.80			19.0	12.0	2.80		12xC		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 380	≥ 550	≥ 30	+20°C ≥ 70

Note: properties under pure Argon gas shielding

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5
4,0	1000	5

TIG rods - stainless steel - duplex

AWS A5.9: ER 2209 EN 12072: W 22 9 3 L

Werkstoffnr, 1,4462

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W2209 is our solid wire for TIG welding ferritic-austenitic duplex steel grades like WNr. 1.4462, UNS 31803. The deposit offers elevated mechanical strength and toughness, excellent resistance to stress corrosion cracking. Typical applications are found in offshore engineering and chemical industry. To be used in combination with tungsten electrodes type WT 20, thorium WC 20 or WL 20.

Base materials to be welded:

- UNS Gr. S31803, S31200
- WNr. 1.4462, 1.4463, 1.4460
- Duplex steel grades of similar composition
- Dissimilar joining UNS/WNr. Materials to 1.4583, P235GH. 16Mo3 and similar materials

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
 - Construction works
- Repair shops
- Heat exchanger industry
- Paper mills
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 2209	Hilchrome G2209	-	-	S2209/HW120	-

Chemical composition, wt.% weld metal - typical:

The state of the s											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	N	٧	Al
0,025	1,60	0,50			23,0	9,0	3,00		0,14		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 480	≥ 680	≥ 22	+20°C ≥ 50

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5

TIG rods - stainless steel - nickel base

AWS A5.14: ER NiCr-3

DIN 1736: WSG-NiCr 20 Nb Werkstoffnr, 2,4806

Wire type:

TIG Solid wire

Current:

Welding positions:

Approvals:

Shielding gas: I1 = Pure Ar

Hilchrome W600 is our solid wire for TIG welding high-grade nickel-base alloys like Inconel® 600. Typical applications include joining and surfacing high-temperature and creep resisting steels, heat resisting and cryogenic materials i.e. cold-tough steels (9% Ni), dissimilar joining and low-alloyed problem steels. Hilchrome W600 is suitable for usage between -196°C up to +650°C, maximum operating temperature of 1200°C (in a S-free environment), highly resistant to hot cracking. To be used in combination with tungsten electrodes type WT20.

Base materials to be welded:

- ASTM/AISI Grade Alloy 600/B168, Alloy 75, Alloy 80A
- Inconel® 600, 601, 690 Incolov® 800
- WNr. 2.4816, 2.4951, 2.4952
- NiCr15Fe and nickel allovs of similar composition
- Ni-steel up to and including 9% Ni
- Dissimilar joining

Applications:

- Pressure vessel & boiler industry
- Repair shops
- Gas industry (incl. LNG applications)
- Heat exchanger industry
- Paper mills
- Cement industry
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 600	Hilchrome G600	-		-	

Chemical composition, wt.% weld metal - typical:

		, ,									
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Ti
0,10	2,80	0,50	≤ 0,015	≤ 0,030	20,0	Bal.			2,50	3,00	0,80

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 400	≥ 640	≥ 35	+20°C ≥ 150 -196°C ≥ 40

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
1,6	1000	5
2,4	1000	5

TIG rods - stainless steel - nickel base

AWS A5.14: ER NiCrMo 3 DIN 1736: WSG-NiCr21Mo9Nb

Werkstoffnr. 2.4831

Wire type: TIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W625 is our solid wire for TIG welding corrosion resistant nickel-base alloys like Incone® 625. Typical applications include joining and surfacing high strength-high corrosion resistant Ni-base alloys, 6Mo steels, high-temperature and creep resisting steels, heat resisting and cryogenic materials, joining ferritic to austenitic steels, surfacing unalloyed and low alloyed steels. Hilchrome W625 is suitable for usage between -196°C up to +1100°C (in a S-free environment), highly resistant to hot cracking. To be used in combination with tungsten electr. WT 20.

Base materials to be welded:

- ASTM/AISI Grade Alloy 625, Alloy 825, Alloy 800H
- Inconel® 625, 825, 800H, Alloy G-3, Alloy 20, Alloy 59
- WNr. 1.4876, 1.4529, 1.4539, 2.4858, 2.4856
- NiCr 22 Mo 9 Nb and nickel alloys of similar composition
- 6 Mo steels
- Dissimilar joining

Applications:

- · Shipyards/offshore
- · Pressure vessel & boiler industry
- Repair shops
- Gas industry
- Heat exchanger industry
 - Paper mills
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 625	Hilchrome G625	-	-	-	-

Chemical composition, wt.% weld metal - typical:

	onemous composition, ways word motal typican											
I	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Ti
ſ	0,10	0,50	0,50	≤ 0,015	≤ 0,015	22,00	bal.	9,00		3,50	5,0	0,30

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 720	≥ 27	+20°C ≥ 100 -196°C ≥ 80

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.	
1,6	1000	5	
2,4	1000	5	

AWS A5.14: ER NiCu-7 DIN 1736: WSG-NiCu30MnTi

Werkstoffnr, 2,4377

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

W NiCu7 is our solid wire for TIG welding nickel-copper alloys like Monel® 400 and nickel-copper clad steels. Typical applications include welding NiCu30Fe (WNr 2.4630) and NiCu30Al (WNr 2.4375) as well as dissimilar joining of steel to copper and steel to copper-nickel alloys. These materials are found in apparatus constructions designed for the chemical and petrochemical industries. A special application field is the fabrication of seawater evaporation plants and marine equipment.

Base materials to be welded:

- ASTM/AISI Grade Alloy 400, Alloy K500
- Monel® 400, 405
- WNr. 2.4360, 2.4375, 2.4361, 2.4365
- Dissimilar joining Monel® 400 to Nickel 200 and to CuNi alloys 70/30 and 90/10

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
- Repair shops
- · Heat exchanger industry
- Petrochemical industry
- Marine equipment

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
NiCu7	G NiCu7	-	-	-	-

Chemical composition, wt.% weld metal - typical:

Chemical composition, with well metal – typical.											
C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Ti
0,15	3,50	1,20	≤ 0,015	≤ 0,020		65,0		Bal.		2,50	2,20

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 300	≥ 500	≥ 35	+20°C ≥ 150

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.		
1,6	1000	5		
2,4	1000	5		

AWS A5.9: ER 307 EN 12072: S 18 8 Mn Werkstoffnr, 1,4370

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

Hilchrome S307 is our solid wire for submerged arc welding difficult-to-weld steels in combination with Hilcoweld flux HW100. Typical applications include joining 14Mn steels, spring steels, tool steels, high carbon steels. The deposit weld metal features strain hardenability, excellent cavitation resistance, thermal shock resistance and scaling resistance up to 850°C.

Base materials to be welded:

- Armour plate
- · Hardenable steels incl. DFTW-steels
- Non-magnetic austenitic steels
- Work hardening austenitic manganese steels
- · Heat resisting ferritic chromium steels

Applications:

- Repair shops
- Heat exchanger industry
- Cement industry
- Railways

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 307R	Hilchrome G307	Hilcord 82	Hilchrome W307	-	-

Chemical composition wire, wt%:

C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	7,00	1,00			19,0	9,0					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
In combination with flux	HW 100	HW 100	HW 100	HW 100
As welded	≥ 320	<u>≥</u> 570	≥ 36	+20°C ≥ 80

Dia.	Spooltype	Weight /
mm.		spool kg.
2,4	B415	25
3,0	B415	25
4,0	B415	25

Hilchrome S309L

SAW wires - stainless steel - special purpose

AWS A5.9: ER 309L EN 12072: S 23 12 L Werkstoffnr. 1.4332

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

Hilchrome S309L is our solid wire for submerged arc welding and cladding corrosion resistant and heat resistant CrNi steels in combination with Hilcoweld flux HW100. Typical applications include joining high-strength steels, unand low alloyed heat treatable steels, stainless, ferritic chromium and austenitic chrome-nickel steels, austenitic manganese steels.

Base materials to be welded:

- High strength, unalloyed and alloyed heat treatable steels; stainless, ferritic chromium and austenitic CrNi steels; austenitic manganese steels
- Chemically resistant weld claddings ranging from ferritic-pearlitic steels to fine grain steels, incl. high temperature fine grain steels

Applications:

- Pressure vessel & boiler industry
- Cement industry
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 309R	Hilchrome G309L Si	Hilcord 85	Hilchrome W309L Si	-	-

Chemical composition wire, wt.%:

			,								
C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,02	1,50	0,50			24,0	13,0					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
In combination with flux	HW 120	HW 120	HW 120	HW 120
As welded	≥ 400	<u>></u> 520	≥ 30	+20°C ≥ 100

5.	14/ 1 1 / /	
Dia.	Spooltype	Weight /
mm.		spool kg.
2,4	B415	25
3,0	B415	25
4.0	B415	25

Hilchrome S308L

SAW wires - stainless steel - acid resistant

AWS A5.9: ER 308L EN 12072: S 19 9 L Werkstoffnr. 1.4316

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

HW 120: TüV

Hilchrome S308L is our solid wire for submerged arc welding low carbon 18Cr10Ni austenitic stainless steel grades like AISI 304, 304L in combination with Hilcoweld fluxes HW100, HW120. Typical applications include all industries where similar materials (incl. higher carbon types) as well as ferritic 13% Cr steels are used. Hilchrome S308L is also suitable for Nb (Cb) or Ti stabilised grades 347 and 321. Weld metal has an excellent resistance to general and intergranular corrosion (up to 350°C), good resistance to oxidising acids and cold reducing acids.

Base materials to be welded:

- ASTM/AISI Grade 302, 304, 304L, 304LN, 321, 347
- WNr 1.4306, 1.4301, 1.4541, 1.4550, 1.4311, 1.4300
- CrNi 18 10 and similar stainless steel grades

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
 - Construction works
- Repair shops
- Paper mills
- · Food processing industry
- Petrochemical industry
- Dairy and cold storage industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 308R	Hilchrome G308LSi	Hilcord 81	Hilchrome W308LSi	-	-

Chemical composition wire, wt%:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,025	1,80	0,60			20,0	9,8					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield M	d strength Pa		strength Pa		gation d - %	Impact ISO	
In combination with flux As welded	HW 100 ≥ 380	HW 120 ≥ 380	HW 100 > 570	HW 120 > 540	HW 100 ≥ 36	HW 120 ≥ 36	HW 100 +20°C ≥ 80 -196°C≥ 40	HW 120 +20°C ≥ 80 -196°C≥ 40

Dia. mm.	Spooltype	Weight / spool kg.
2,4	B415	25
3,0	B415	25
4,0	B415	25

Hilchrome S316L

SAW wires - stainless steel - acid resistant

AWS A5.9: ER 316L EN 12072: S 19 12 3 L Werkstoffnr. 1.4430

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

HW 120: TÜV

Hilchrome S316L is our solid wire for submerged arc welding low carbon 17Cr12Ni3Mo austenitic acid resistant stainless steel grades like AISI 316, 316L in combination with Hilcoweld fluxes HW100, HW120. Typical applications include all industries where superior corrosion resistance is required: textile industry, paper mills, chemical industry, cellulose industry etc., resistance to general and intergranular corrosion (up to 400°C), good resistance to hot cracking.

Base materials to be welded:

- ASTM/AISI Gr. 316, 316L, 316LN, 316Cb, 316Ti
- WNr 1.4583, 1.4435, 1.4436, 1.4404, 1.4401, 1.4571 1.4580, 1.4406*, 1.4429*
 - * without postweld quenching
- CrNiMo 17 12 3 and similar stainless steel grades

Applications:

- Shipyards/offshore
- · Pressure vessel & boiler industry
- Construction works
- Repair shops
- Paper mills
- Petrochemical industry

Equivalent product in alternative welding process:

S	MAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchr	ome 316R	Hilchrome G316L Si	Hilcord 83	Hilchrome W316L Si	-	-

Chemical composition wire, wt.%:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,02	1,80	0,50			19,0	12,0	2,80				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa			strength Pa	Elongation Lo=5d - %		Impact Values ISO-V J	
In combination with flux	HW 100	HW 120	HW 100	HW 120	HW 100	HW 120	HW 100	HW 120
As welded	≥ 390	≥ 400	<u>></u> 600	<u>></u> 580	≥ 35	≥ 35	+20°C ≥ 75 -196°C≥ 40	+20°C ≥ 80 -196°C <u>></u> 40

Dia. mm.	Spooltype	Weight / spool kg.
2,4	B415	25
3,0	B415	25
4.0	B415	25

SAW wires - stainless steel - duplex

AWS A5.9: ER 2209 EN 12072: S 22 9 3 LN

Werkstoffnr. 1.4462

Wire type: SAW Solid wire

Welding positions:

Approvals in combination with flux:

HW 120: TÜV

Hilchrome S2209 is our solid wire for submerged arc welding ferritic-austenitic duplex steel grades like WNr. 1.4462, UNS 31803 in combination with Hilcoweld flux HW120. The deposit weld metal offers elevated mechanical strength and toughness, excellent resistance to stress corrosion cracking. Typical applications are found in offshore engineering and chemical industry.

Base materials to be welded:

- UNS Gr. S31803, S31200
- WNr. 1.4462, 1.4463, 1.4460
- · Duplex steel grades of similar composition

Applications:

- · Shipyards/offshore
- Construction works
- · Boiler & pressure vessel industry
- Repair shops
- Heat exchanger industry
- · Paper mills
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 2209	Hilchrome G2209	-	Hilchrome W2209	-	

Chemical composition wire, wt.%:

 			,								
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	N	٧	Al
0,02	1,60	0,50			23,0	8,80	3,20		0,15		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
In combination with flux	HW 120	HW 120	HW 120	HW 120
As welded	≥ 570	<u>≥</u> 780	≥ 32	+20°C ≥ 100

Dia. mm.	Spooltype	Weight / spool kg.
2,4	B415	25
3,0	B415	25

EN 760: S A AB 2 78 9Cr AC

Flux type:

Agglomerated (semi) basic

Welding positions:

Approvals in combination with wire:

HW 100 is our agglomerated semi-basic flux for submerged arc welding stainless steel grades. HW 100 is suitable for single and multipass welding, for fillet welds and multiwire applications. The weld has an excellent appearance and the slag is self-releasing, even when hot. The weld metal, produced in combination with corresponding wires, offers good corrosion resistance in its typical applications. The basicity index is 1,2 ca. (Boniszewski).

Base materials to be welded:

- CrNi 18 10 (AISI 304) and similar stainless steel grades
- CrNiMo 17 12 3 (AISI 316) and similar stainless steels
- Armour plate, hardenable steels, non-magnetic austenitic steels, heat resisting ferritic chromium steels

Applications:

- Shipyards/offshore
- · Boiler & pressure vessel industry
- Construction works
- Repair shops
- Heat exchanger industry
- Cement industry
- Railways
- Petrochemical industry
- Dairy and cold storage industry

Chemical composition, wt.% weld metal - typical:

	,,	· · · · · · · · · · · · · · · · · · ·					
Type of wire	С	Si	Mn	Ni	Мо	Cr	Nb
Hilchrome S307	0,10	1,00	7,00	9,0		19,0	
Hilchrome S308L	0,04	0,80	1,80	9,8		20,0	
Hilchrome S316L	0,04	0,80	1,80	12,0	2,80	19,0	

Mechanical properties, weld metal - typical:

Condition		0,2% Yield strength	Tensile strength	Elongation	Impact Valu	ies ISO-V J
A = as welded		MPa	MPa	A5 - %	+20°C	-196°C
Hilchrome S307	Α	<u>></u> 320	<u>></u> 570	<u>></u> 36	<u>></u> 80	-
Hilchrome S308L	Α	≥ 380	<u>></u> 570	<u>></u> 36	<u>></u> 80	<u>></u> 40
Hilchrome S316L	Α	≥ 390	≥ 600	≥ 35	≥ 75	≥ 40

Spooltype	Weight / kg.				
bag	25				

EN 760: S A FB 2 53 AC

Flux type:

Agglomerated high basic

Welding Current:

=+ ~

Welding positions:

→

Approvals in combination with wire:

Hilchrome S308L: TüV Hilchrome S316L: TüV Hilchrome S2209: TüV

HW 120 is our agglomerated high-basic flux for submerged arc welding stainless steel grades incl. duplex. HW 120 is suitable for single and multipass welding, for fillet welds and multiwire applications. The weld has an excellent appearance and the slag is self-releasing, even when hot. HW 120 is suitable for high speed welding on thin sheet metals. The basicity index is 2,2 ca. (Boniszewski).

Base materials to be welded:

- CrNi 18 10 (AISI 304) and similar stainless steel grades
- CrNiMo 17 12 3 (AISI 316) and similar stainless steels
- Duplex steel grades UNS S31803, 1.4462 and similar materials
- Chemically resistant claddings

Applications:

- Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Repair shops
- Heat exchanger industry
- Cement industry
- Paper mills
- Food processing industry
- Petrochemical industry

Chemical composition, wt.% weld metal - typical:

Type of wire	С	Si	Mn	Ni	Мо	Cr	N
Hilchrome S309L	0,04	0,60	1,6	13,5		23,5	
Hilchrome S308L	0,04	0,60	1,6	10,0		19,0	
Hilchrome S316L	0,04	0,60	1,6	12,0	2,8	18,7	
Hilchrome S2209	0,03	0,60	1,6	9,0	3,2	22,5	0,15

Mechanical Properties, weld metal - typical:

	Micchaillear i Tope	i uc						
Condition		0,2% Yield strength	Tensile strength	O-V J				
A = as welded		MPa	MPa	Lo=5d - %	+20°C	-40°C	-196°C	
	Hilchrome S309L	Α	≥ 400	≥ 520	≥ 30	≥ 100	≥ 80	≥ 60
	Hilchrome S308L	Α	<u>></u> 380	<u>≥</u> 540	<u>></u> 36	<u>></u> 80	-	<u>></u> 40
	Hilchrome S316L	Α	<u>></u> 400	<u>></u> 580	<u>></u> 35	<u>></u> 80	-	≥ 40
	Hilchrome S2209	Α	≥ 570	≥ 780	<u>≥</u> 32	<u>></u> 80	≥ 80	-

Spooltype	Weight / kg.
bag	25

Repair & Maintenance

Introduction to hardfacing

Repair & Maintenance is one of the widest application fields in welding. In principle all activities not being involved in joining new structures are to be considered as repair & maintenance. Generally speaking repair & maintenance is a every day routine in all aspects of the welding industry.

Hardfacing

A particular area of the repair & maintenance field is hardfacing or surfacing parts subject to wear. Hardfacing is a low cost method of depositing wear resistant surfaces on metal components to extend their service life. Although used primarily to restore worn parts to usable condition, hardfacing is also applied to new components before being placed into service. Hardfacing provides the following benefits:

- · Extention of the life cycle of workpieces
- · Fewer replacement parts needed
- · Increased operating efficiency by reducing downtime
- · Less expensive base materials can be used
- · Reduction of overall costs

Restoring worn parts normally involves the following steps:

- 1. Buttering = a deposit will dilute the C and alloy content of base materials
- Build-up = seriously worn areas are rebuilt close to their working size using crack resistant welding materials
- 3. Hardfacing = wear resistant surfaces are deposited on the base materials or on build-up deposits

Welding material selection depends on three major factors:

- 1. Base metal primarily affects the choice of build-up materials
- 2. Type of wear -
 - metal-to-metal friction wear from steel parts rolling or sliding against each other with little or no lubrication
 - b. severe impact wear from severe pounding tends to squash, gouge and crack the surface
 - abrasion + impact wear from gritty material accompanied by heavy pounding which tends to chip
 or crack, grind away the surface
 - d. severe abrasion wear from gritty materials which grind or erode the surface. Severe abrasion is
 often accompanied by heavy compression or moderate impact
 - e. metal-to-earth abrasion wear from earth like materials accompanied by moderate impact
 - f. corrosion chemical attack.
- 3. Arc welding method depends primarily upon the size and number of components, available equipment and frequency of hardfacing. All general welding techniques can be applied.

Fighting wear

In order to combat against wear it is important to determine the types of wear as well as the situation of the workpiece in practice i.e. its function. For each type of wear guidelines can be given to which a hardfacing alloy should comply. Some of these guidelines are to be found on the following pages. For general information about hardfacing and specific information how to combat wear in your typical application we recommend you to contact us.

Base	Description		Welding	process / filler	metals		
material	-	Stick electrodes (1 st choice)	Stick electrodes (2 nd choice)	GMAW/ GTAW	FCAW	SAW	
Cast Iron	Grey CI	Pure Nickel	Nickel Iron	On request	On request	-	A,B
	Nodular CI	Nickel Iron	Pure Nickel	On request	On request	-	В
	Malleable CI	Nickel Iron	-	On request	On request	-	A,B
	CI to steel	Nickel Iron	Pure Nickel	On request	On request	-	A,B
Difficult-	C45	312R	307R G/W312, 30		Hilcord 82	S307/HW100	С
to-weld	42CrMo4	312R	307R	G/W312, 307	Hilcord 82	S307/HW100	С
steel	42MnV7	312R	307R	G/W312, 307	Hilcord 82	S307/HW100	С
(DFTW)	Tool steel	312R	307R	G/W312, 307	Hilcord 82	S307/HW100	С
	Cast steel	307R	312R	G/W307	Hilcord 82	S307/HW100	С
	Mn-steel	307R	312R	G/W307	Hilcord 82	S307/HW100	D
	Armour plate	307R	312R	G/W307	Hilcord 82	S307/HW100	С
	Spring steel	312R	307R	G/W312, 307	Hilcord 82	S307/HW100	С
	Unknown materials	312R	307R	G/W312, 307	Hilcord 82	S307/HW100	С
Wear	Medium abrasion,	Hardmelt 600	-	H-600	Hilcord 600	-	E
resistant surfacing	high impact Heavy abrasion, medium impact	Hardmelt 638	Hardmelt 643	-	On request	-	Е
	Extreme abrasion, low impact	Hardmelt 643	Hardmelt 645	-	On request	-	Е
	Extreme impact, low abrasion	Manganil	Hardmelt 350	H-350	On request	S307/HW100	-
Ì	Sliding wear, heavy impact	Hardmelt 620	Hardmelt 600	H-600	On request	-	Е
	Sliding wear, impact, corrosion	Hilchrome 312R	Hilchrome 307R	G/W312	Hilcord 82	S307/HW100	-
	Extreme sliding, abrasion, heat and corrosion	Hilcostel 6E	Hilcostel 12E	Hilcostel 6T	On request	-	F
	Buffer layers prior to surfacing	Hilchrome 312R	Hardmelt 350	G/W312 H-350	Hilcord 82	-	G
Remarks	A Peening, ham	mering of the we	ald denosit is he	lning to reduce v	velding etrees		
i verriai no		(interpass) of 6					
		workpieces up to		idiritairied to dve	Dia ficat stress		
		at, keep interpass		max 150°C			
		sensitive base r			ior to surfacing		
	F Preheat base						
	Small wor	kpieces: 200-30	0°C				
i	 Large wor 	kpieces: 300-40	0°C				
Ī	G First choice for	r crack sensitive	base materials	and filler metals			

Classification DIN 8555

Filler metals used in surfacing

Scope:

The DIN standard 8555 applies to filler metals made of unalloyed and alloyed steel as well as grey iron (cast iron); it also covers filler metals made of hard alloys, hard metals and copper alloys used in surfacing primarily in connection with ferrous metals.

The DIN standard 8555 is intended to make the selection and application of filler metals easier for the user and to define the properties and security limits of the surfacing welding applied. The standard designation contains a description of alloy groups.

Alloy	Description	Examples for application	Filler metals
group 1	Unalloyed filler metals \leq 0,4%C or low alloy type \leq 0,4%C and \leq 5% maximum total alloying constituents Cr, Mn, Mo, Ni - used wherever straight-forward surfacing on unalloyed steel is concerned and where no special demands are made in respect to the hardness of the weld deposit	Rails, parts for agricultural machines, tractor tracks	Hardmelt 350 H 60 / HW 400
2	Unalloyed filler metals > 0,4%C or low alloy type > 0,4%C and ≤ 5% maximum total alloying constituents Cr, Mn, Mo, Ni - offers higher resistance to wear than group 1.	Screw conveyors, fan impellers, mixers	H-350
3	Alloyed filler metals having the properties of hot working tools - used in cases where the weld metal is required to have a greater hardness at elevated temperatures	Hot working tools, forging dies, shears, tips for ingots tongs when exposed to high temperatures	On request
4	Alloyed filler metals having the properties of high speed steels	Cutting tools, mandrels, shear blades, cutting dies, tips of boring tools	Hardmelt 620
5	Alloyed filler metals > 5%Cr and low C content (≤ 0,2%C) - filler metals of Cr-steel character and low C. The hardness of weld metal increases acc. to the proportion of martensite	Surfacing welds which are scale resistant and from 12%Cr upwards rust resistant, valve parts, pump plungers, furnace parts	Stainless steel grades
6	Alloyed filler metals > 5%Cr and higher C content (> 0,2% - ≤ 2,0%C) - owing to the high C content the hardness is > 500HB and rust resistance is reduced.	Cutting tools, shear blades, rolls for cold rolling mills	Hardmelt 600 H-600 Hilcord 600
7	Mn austenites with 11-18%Mn, > 0,5%C and ≤ 3%Ni - materials giving a weld metal corresponding to austenitic manganese steel, weld metal is work-hardenable when strained and is suitable for parts in which work-hardening is obtained through pressure	Surfacing of large areas, wearing plates, crusher plates, excavator teeth, bolts	Manganil
8	Cr-Ni-Mn austenites - filler metals give a tougher weld metal than alloys of group 7	Crusher components not subjected to severe duty, switch blades, crossings, rails, water turbine parts	Hilchrome 307R Hilchrome S307 / HW 100
9	Cr-Ni steels (resistant to rust acid and heat) - used where it is important for the weld metal to have adequate resistance to corrosion	Deposition welding resistant to corrosion and heat	Stainless steel grades
10	High C (≥ 2,0% - ≤ 5,0%) content and / or high Cr (≤ 35%) alloying constituent with or without Co, Mo and W - used in a wide range of industrial applications, weld metal contains complex carbides on a Cr basis in an austenitic matrix	Repairs to mining and steel works equipment, surfacing on machine components used in the construction industry and agriculture	Hardmelt 638 Sugarhard Hardmelt 643 Hardmelt 645

Classification DIN 8555

Filler metals used in surfacing

Alloy	Description	Examples for application	Filler metals
group			
20	Low iron filler metals on Co basis, alloyed with Cr-W with or without Ni and Mo.	Fittings of all kinds, valves seatings of exhaust valves, valves seatings in steam engines, pumps shafts and similar components exposed to severe corrosion and erosion	Hilcostel 6E Hilcostel 6T Hilcostel 12E Hilcostel 12T
21	Low iron alloys on a carbide basis	Tools and machine components for working in rocky soil, drills etc. extruder worms for the ceramic industry	On request
22	Low iron alloys on Ni basis, alloyed with Cr and Cr-B	Valves, worms, shafts as used, cement pumps and other pump types	Hilchrome 600S
23	Alloys on Ni basis, alloyed with Mo with or without Cr	Contact surfaces of valves in chemical equipment, cladding on the working edges of Ni-Cr-Mo alloy cutting dies at high temp.	Hilchrome 625
30	Non ferrous alloys on a Cu basis, alloyed with Sn - outstanding for resistance to sliding wear and resistant to salt solutions and acids	Bearing shells, shafts, slides, valves, housing, worm wheels, and helical gears, guide wheels and track wheels, fittings	Bronsil Tinbronze 94-6 Brazing rods
31	Non ferrous alloys on a Cu basis, alloyed with Al (≥ 5,0 - ≤	15%):	
	CuAl filler metals alloying element Fe - containing up to 6%Fe CuAl filler metals alloying element Ni - containing up to 5% Ni	Pump components, valve parts, agigators, propellers, pickling hooks Ships propellers, turbine rotors, pump components, valve parts	Albronze 8, ALBz9Fe (on request) ALBz 35 (on request)
	CuAl filler metals alloying element Mn - containing up to 15% Mn	Turbine and pump components, ships propellers, flanges, valves, shafts, cylinder heads, safety tools	Albronze 300
	CuAl filler metals alloying element Si containing up to 2,5% Si	Pumps components, valves, gearing components	-
32	Non ferrous alloys on a Cu basis, alloyed with Ni - CuNiAl alloys	Distilling apparatus, sea water pipelines, capacitors, coolers, chemical equipment, heat exchangers	Cuni Cunifer 70-30 Cunifer 90-10

Repair & Maintenance

Hardness conversion table

With this conversion table you can determine the approximate hardness of deposit weld metal. Please note that conversion tables must be regarded only as an estimate of comparative values.

Rm = tensile strength (MPa) HV = Vickers hardness HB = Brinell hardness

~30

Rm	HV	НВ	HRc	Rm	HV	HB	HRc	Rm	HV	HB	HRc
200	63	60	-	1000	311	296	~31	1800	547	-	~52
220	69	66	-	1020	317	301	32	1820	553	-	-
240	75	71	-	1040	323	307	-	1840	559	-	-
260	82	78	-	1060	330	314	~33	1860	564	-	~53
280	88	84	-	1080	367	349	34	1880	570	-	-
300	94	89	-	1100	342	325	-	1900	575	-	-
320	100	95	-	1120	349	332	~35	1920	580	-	~54
340	107	102	-	1140	355	337	36	1940	586	-	-
360	113	107	-	1160	361	343	-	1960	591	-	-
380	119	113	-	1180	367	349	~37	1980	596	-	55
400	125	119	-	1200	373	354	38	2000	602	-	-
420	132	125	-	1220	380	361	-	2020	607	-	-
440	138	131	-	1240	385	366	~39	2040	613	-	-
460	143	136	-	1260	392	371	40	2060	618	-	~56
480	150	143	-	1280	397	377	-	2080	623	-	-
500	157	149	-	1300	403	383	41	2100	629	-	-
520	163	155	-	1320	410	390	-	2120	634	-	-
540	168	160	-	1340	417	396	~42	2140	639	-	57
560	175	166	-	1360	423	402	43	2160	644	-	-
580	181	172	-	1380	430	409	-	2180	650	-	-
600	187	178	-	1400	434	413	44	2200	655	-	58
620	193	184	-	1420	440	418	-	-	675	-	59
640	200	190	-	1440	446	424	~45	-	698	-	60
660	205	195	-	1460	452	429	-	-	720	-	61
680	212	201	-	1480	458	435	46	-	745	-	62
700	219	208	-	1500	464	441	-	-	773	-	63
720	225	214	-	1520	470	447	-	-	800	-	64
740	230	219	-	1540	473	449	~47	-	829	-	65
760	237	225	-	1560	481	-	-	-	864	-	66
780	243	231	21	1580	486	-	~48	-	900	-	67
800	250	238	22	1600	491	-	-	-	940	-	68
820	255	242	23	1620	497	-	49				
840	262	249	~24	1640	503	-	-	1			
860	268	255	25	1660	509	-	-	1			
880	275	261	~26	1680	514	-	50	1			
900	280	266	27	1700	520	-	-	1			
920	287	273	28	1720	525	-	-	1			
								1			

~51

AWS A5.1: E 6013 EN 499: E 42 0 RC 11

Coating type: Rutile

Arc voltage: 42V

Approvals: ABS, BV, DB+Ü, DNV, GL, LR, TüV

Current:

Tip colour:

Welding positions:

Printing:

HILCO Red Extra / E42 0 RC / E 6013

Red Extra is our universal electrode for all welding positions, including vertical-down position. The electrode is characterised by easy handling, smooth arc transfer, easy slag removal and a finely rippled bead surface. Red Extra is the ideal choice for construction work where the use of one type of electrodes is permissible. Typical applications include assembly, workshop and repair welding of mild and low-alloyed structural steels. Red Extra is an all-current type (AC/DC), which also operates on transformers with low OCV, min. 42V.

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops
- Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 40	Fer SG 2	H60 / HW430	Fer G 1

Chemical composition, wt. % weld metal - typical:

The mount of the form of the factor of the f												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,12	0,60	0,40	≤ 0.030	≤ 0.030							ĺ

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 500	≥ 22	$0^{\circ}C \geq 50$

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
2,0	300	10,5	40-60
2,5	350	18,2	60-100
3,2	350	28,9	90-140
4,0	350	44,6	150-190
5,0	350	70,4	180-240

Stick electrodes - repair & maintenance - unalloyed steel

AWS A5.1: E 6013

EN 499: E 42 0 RC 11

Coating type:

Rutile

Arc voltage: 42V

Approvals: GL, LR Current:

Tip colour: yellow

Welding positions:

Printing:

Performa / E42 0 RC / E 6013

Performa is our all-round (AC/DC) electrode for all welding positions. The electrode is characterised by easy handling, smooth arc transfer, easy slag removal and a finely rippled bead surface. Performa is the logic first choice for shipbuilding. Typical applications include assembly, workshop and repair welding of mild and low-alloyed structural steels. Performa also operates on transformers with low OCV, min. 42V.

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops
- Office furniture industry

Equivalent product in alternative welding process:

Equivalent product in alternative werding process.										
	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing				
	-	K 60	Hilcord 40	Fer SG 1	H60 / HW430	Fer G 1				

Chemical composition, wt. % weld metal - typical:

<u> </u>												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,10	0,50	0,40	≤ 0,030	≤ 0,030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 500	≥ 22	+20°C ≥ 55

Dia.	Length	Weight (kgs)	Current
mm.	Mm.	1000 pcs.	Α
2,5	350	16,5	80-110
3,2	350	27,9	110-130
4,0	350	42,5	140-160

AWS A5.1: E 7016

EN 499: E 42 2 RB 12 H10

Coating type: Basic-rutile

Arc voltage: 55V

Approvals: DB+Ü, DNV, LR, TüV, Force

Current:

Tip colour:

Welding positions:

Printing:

Basic 55 / E 7016

Basic 55 is our double coated electrode for all welding positions, except vertical down position. The electrode is characterised by easy handling, a well controllable arc, excellent root penetration, easy slag removal and excellent metallurgical properties up to -30°C. Typical applications include shipbuilding, general constructions, bridges, storage tanks as well as root pass and positional welding. Basic Special is an all-current type (AC/DC).

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- · Shipyards/offshore
- · Construction works
- · Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 51	Fer SG 2	H100 / HW530	Fer G 2

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,06	0,90	0,70	≤ 0.025	≤ 0.025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 420	≥ 510	≥ 22	-20°C ≥ 90

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
2,5	350	19,5	60-90
3,2	350	32,8	95-150
3,2	450	43,2	95-150
4,0	450	65,0	140-190

AWS A5.1: E 7018

EN 499: E 42 4 B 32 H5

Coating type:

Basic

Arc voltage: 65V

Approvals: ABS, GL, LR

Current:

~

Tip colour:

Welding positions:

Printing: BASIC / E 7018

Basic is our basic coated low hydrogen (H_{DM} < 5 ml. / 100 gr. deposit weld metal) electrode for all welding positions, except vertical down position. The electrode is characterised by a smooth, quiet arc, very low spatter, and good arc penetration. Basic can be used at high travel speeds due to its elevated recovery (120%). Typical applications include shipbuilding, general constructions, bridges, storage tanks as well as producing crack-resistant and tough welded joints on mild and low-alloy steels. Basic is welded on AC current.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- · Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- · Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	K 60	Hilcord 51	Fer SG 2	H100 / HW530	Fer G 2

Chemical composition, wt. % weld metal - typical:

		, , ,	· , · · · · · · · · · · · · · · · · · ·									
C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al	
80,0	1,00	0,50	≤ 0.025	≤ 0.025								

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 420	≥ 510	≥ 22	-40°C ≥ 47

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	20,5	65-90
3,2	350	37,3	100-140
4,0	450	64,4	140-190
5,0	450	98,3	180-250

AWS A5.5: E 8018-B2

EN 1599: E Cr Mo 1 B 42 H5

Coating type:

Basic

Arc Voltage: 70V

Approvals: TüV Current:

=+ =-

Tip colour:

Welding positions:

Printing:

Hilco B 19 CrMo

B 19 CrMo is our basic-coated low hydrogen (H_{DM} < 5 ml. / 100 gr. deposit weld metal) for welding low alloyed fine grain and creep resisting steels like 13CrMo4 5 up to a maximum operating temperature of 550°C. Typical applications include the construction of pressure vessels, boilers and pipes. B 19CrMo is preferably welded on DC current, root pass and narrow gap welding on DC- polarity.

Base materials to be welded:

- Boiler steel 13CrMo4-5, 15CrMo5, 16CrMoV4, A 333 Grade P 11, P 12, G-17CrMo5-5, 22Mo4, G-22CrMo 5-4, 42CrMo4,
- Heat treatable steels up to 780 MPa tensile strength
- · Case hardening and nitriding steels

Applications:

- Pressure vessel & boiler industry
- Pipelines
- Repair shops
- Heat exchanger industry
- Steel mills
- Petrochemical industry
- · Cement industry

Equivalent product in alternative welding process:

SMAW GMAW FCAW		GTAW	SAW	Gas welding / brazing	
-	SG CrMo 1	Hilcord 61M	Fer SG CrMo 1	H100CrMo1/HW 580	-

Chemical composition, wt. % weld metal - typical:

The state of the s											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,07	0,80	0,40	≤ 0,020	≤ 0,020	1,10		0,50				

Mechanical properties, weld metal - typical:

Condition	Condition 0,2% Yield strength MPa		Elongation Lo=5d - %	Impact Values ISO-V J	
Stress relieved	≥ 490	≥ 590	≥ 22	+20°C ≥ 100	

Notes: stress relieved condition 680°C / 2 h. - preheat, interpass and PWHT are essential for obtaining properties as indicated. For welding 13CrMo4-5 preheat 200-250°C, PWHT 660-700°C min. 1/2 h., cool down slowly

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	23,6	80-110
3,2	350	38,3	100-140
4,0	350	55,3	130-180

Hilchrome 307R

AWS A5.4: E307-16

EN 1600: E 18 8 Mn R 12

Werkstoffnr. 1.4370

Coating type:

Rutile-basic

Approvals:

Arc voltage: 50V

Current:

Tip colour:

Welding positions:

Printing:

Hilchrome 307R / E307-16

Hilchrome 307R is our rutile-basic coated electrode for joining dissimilar steels and difficult-to-weld steels. Typical applications include joining 14Mn steels, spring steels, tool steels, high carbon steels. The electrode is recommended for buffer layers prior to surfacing. The deposit weld metal features strain hardenability, excellent cavitation resistance, thermal shock resistance and scaling resistance up to 850°C. Hilchrome 307R is a core wire alloyed all-current type (AC/DC).

Base materials to be welded:

- Armour plate
- · Hardenable steels incl. DFTW-steels
- Non-magnetic austenitic steels
- Work hardening austenitic manganese steels
- Heat resisting ferritic chromium steels
- Dissimilar joining

Applications:

- Repair shops
- Car industry
- Heat exchanger industry
- · Cement industry
- Railways
- · Cane sugar industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	Hilchrome W307	Hilcord 82	Hilchrome G307	S307/HW100	

Chemical composition, wt. % weld metal - typical:

С	Mn		Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	6,50)	0,70	≤ 0,030	≤ 0,030	18,8	8,80					

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 500	≥ 650	≥ 30	+20°C ≥ 80

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A							
2,5	300	18,9	60-80							
3,2	350	34,6	80-120							
4,0	350	51,1	100-160							

Hilchrome 312R

AWS A5.4: E312-17

EN 1600: E 29 9 R 3 2

Werkstoffnr. 1.4337

Coating type:

Rutile

Arc Voltage: 65V

Approvals:

Current:

Tip colour:

Welding positions:

Printing:

Hilchrome 312R / E312-17

Hilchrome 312R is our rutile coated electrode which is to be considered as a problem solver for all kinds of steel grades incl. stainless and difficult-to-weld steels. Typical applications for this WELD-ALL include joining hard manganese steels, tool steels, spring steels, buffering as well as joining dissimilar steel grades. The electrode deposits a crack-resistant weld metal with an increased ferrite content of approx. FN50. Hilchrome 312R is a core wire alloyed all-current type (AC/DC).

Base materials to be welded:

- Armour plate
- · Hardenable steels incl. DFTW-steels
- · Tool, die and spring steels
- Austenitic manganese steels
- Hardfacing clutches, gear wheels, shafts
- Buffer layers prior to hardfacing
- Dissimilar joining

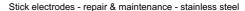
Applications:

- Repair shops
- Cement industry
- Steel mills
- Mine industryRailways
- Cane sugar mills

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	Hilchrome G312	-	Hilchrome W312	-	-

Chemical composition, wt. % weld metal - typical:


ľ	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
ſ	0,10	0,70	1,20	≤ 0.020	≤ 0.025	28,5	9,5					

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 650	≥ 800	≥ 22	+20°C ≥ 30

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	300	17,5	60-80
3,2	350	32,3	80-120
4,0	350	47,8	110-145

Hilchrome 600

AWS A5.11: E NiCrFe3
DIN 1736: EL-NiCr15FeMn
Werkstoffnr. 2.4807

Coating type:

Basic

Arc voltage: 60V

Approvals:

Current:

=+

Tip colour:

Welding positions:

Printing:

Hilchrome 600/E NiCrFe3

Hilchrome 600 is our basic coated DC electrode for welding high-grade nickel-base alloys like Incone® 600. Typical applications include joining and surfacing high-temperature and creep resisting steels, heat resisting and cryogenic materials i.e. cold-tough steels (9% Ni), dissimilar joining and low-alloyed problem steels. Electrode is suitable for usage between -196°C up to +650°C, maximum operating temperature of 1200°C (in a S-free environment), highly resistant to hot cracking. Hilchrome 600 is core wire alloyed.

Base materials to be welded:

- ASTM/AISI Grade Alloy 600/B168, Alloy 75, Alloy 80A
- Inconel® 600, 601, 690 Incoloy® 800
- WNr. 2.4816, 2.4951, 2.4952
- NiCr15Fe and nickel alloys of similar composition
- · Ni-steel up to and including 9% Ni
- Dissimilar joining

Applications:

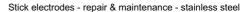
- Pressure vessel & boiler industry
- · Repair shops
- Gas industry (incl. LNG applications)
- Heat exchanger industry
- Paper mills
- Cement industry
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	Hilchrome G600	ı	Hilchrome W600	ı	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Al
0,04	6,0	0,40	≤ 0,030	≤ 0,030	16,0	Bal.			2,0	6,0	


Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 380	≥ 620	≥ 35	+20°C ≥ 80 -196°C ≥ 65

Notes:

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	300	15,3	50-70
3,2	300	27,4	70-95
4,0	350	42,6	90-120

Hilchrome 600S

Coating type:
Basic

Arc voltage: 60V

Current:

Welding positions:

Approvals: Tip colour: Printing:
- Hilchrome 600S/E NiCrFe3

Hilchrome 600 is our basic coated high efficiency (140%) electrode for welding high-grade nickel-base alloys like Inconel® 600. Typical applications include surfacing high-temperature and creep resisting steels, heat resisting and cryogenic materials i.e. cold-tough steels (9% Ni), dissimilar joining and low-alloyed problem steels.

Base materials to be welded:

- NiCr15Fe and nickel alloys of similar composition
- Dissimilar joining

Applications:

- Repair shops
- · Paper mills
- Cement industry

Equivalent product in alternative welding process:

Equivalent proc	adot iii ditorriativo wor	aning process.			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	Hilchrome G600	-	Hilchrome W600	-	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Al
0,04	4,5	0,30			16,0	Bal.			3,0	< 7,0	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 380	≥ 620	≥ 35	+20°C ≥ 80 -196°C > 65

Notes:

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	28,1	60-90
3,2	350	47,5	90-120
4,0	350	71,9	110-150

DIN 8555: E 1-UM-350

Coating type:

Basic

Arc voltage: 70V

Approvals:

Current:

~ =+

Tip colour:

Welding positions:

Printing:

E1-UM-350 HARDMELT 350

Hardmelt 350 is our basic coated electrode for wear resistant surfacing on low alloyed steel subject to metal-to-metal wear, but also impact and mild abrasion. Deposit weld metal has a martensitic structure, hardness of pure weld deposit approximately 370HB.

After welding the deposit can easily be machined using carbide tipped tools.

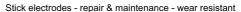
Applications:

Hardmelt 350 is particularly suitable under conditions of moderate abrasion and friction, combined with impact. Ideally suitable for applications involving rolling, sliding and metal-to-metal wear. Hardmelt 350 may also be used as a final overlay on parts that need to be machined or as a build-up layer for hardfacing materials providing higher wear resistance.

Applications are universal but typical for building up parts e.g. tractor and shovel parts, dragline chains, cable sheaves, shovel and bucket lips, dredge pump parts, cutter teeth, repair of worn switches and rails, pump impellers and housings, dredge and shovel bucket teeth, mill and crushing hammers. Hardfacing crane and mine car wheels, tractor rolls, idlers, links and sprockets, cable drums, roller quides, transmission parts, drilling equipment

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding /
					brazing
-	H 350	On request	-	H60/HW400	-


Chemical composition, wt. % weld metal - typical:

		, ,									
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0.20	1.40	1.20			1.80						

Mechanical properties, weld metal – typical:

Condition	Hardness	
As welded	1 layer on unalloyed steel	370 HB
	2 layers on unalloyed steel	420 HB
	1 layer on 0,5%C steel	420 HB

· working in									
Dia.	Length	Weight (kgs)	Current						
mm.	mm.	1000 pcs.	Α						
3,2	450	46,0	100-140						
4,0	450	69,7	140-180						
5,0	450	109,5	180-230						

DIN 8555: E6-UM-60-GP

Coating type:

Basic

Arc voltage: 65V

Approvals:

Current:

Tip colour:

Red

Welding positions:

Printing:

HARDMELT 600

Hardmelt 600 is our basic coated electrode for wear resistant surfacing parts of steel, cast steel and high Mn-steel, subject to abrasion, metal-to-metal wear, impact and/or compression stresses. Deposit weld metal has a martensitic structure, hardness of pure weld deposit approx. 600HB. After welding the deposit can be machined by arindina only.

Applications:

Hardmelt 600 is particularly suitable under conditions of heavy abrasion and friction, combined with impact. Ideally suitable for applications involving rolling, sliding and metal-to-metal wear.

Applications are universal but typical for hardfacing parts e.g. agricultural, earth moving and stone crushing industry, hardfacing crane and mine car wheels, sprockets and gear teeth, skip guides, dredger buckets, scrapper blades, transfertables, cable sheaves, tractor and shovel parts, dragline buckets, conveyor chains, hammer heads, clutch iaws

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	H600	Hilcord 600	ı	ı	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,50	0,40	2,30			9,0						

Mechanical properties, weld metal - typical:

Condition	Hardness	
As welded	1 layer	56-58 HRc
	After soft annealing 780-820°C / oven	approx. 25 HRc
	After hardening 1000-1050°C / oil	approx. 60 HRc
	1 layer on high Mn-steel	approx. 22 HRc
	2 layer on high Mn-steel	approx. 40 HRc

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
3,2	350	34,1	100-140
4,0	450	68,3	140-180
5,0	450	105,7	180-210

AWS A5.13: E Fe 5 B

DIN 8555: E4-UM-60-ST

Coating type:

Rutile

Arc voltage: 60V

Approvals:

Current:

~ =-

Tip colour:

Welding positions:

Printing:

HARDMELT 620

Hardmelt 620 is our rutile coated electrode for wear resistant surfacing tool steels subject to metal-to-metal wear at elevated temperatures up to 550°C. Deposit weld metal is a high speed steel (HSS) similar to M-1 tool steel, structure is fine precipitated carbides in a martensitic matrix, hardness of pure weld metal is 62 HRc. This hardness can be increased after tempering. After welding the deposit can be machined by grinding only.

Applications:

Hardmelt 620 produces a crack-free wear resistant tool steel deposit and is particularly suitable for applications involving severe metal-to-metal wear coupled with elevated temperatures (up to 550°C).

Typical applications include building up worn steel dies, high speed cutting tools, wire guides, punch and forging dies, cold and hot shear blades, trimmers or the application of wear resistant surfaces to unalloyed and low alloy steel

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
=	-	On request	-	-	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	W
1,10	0,10	1,10			4,70		9,80			2,20	2,10

Mechanical properties, weld metal - typical:

Condition	Hardness	
As welded	1 layer	61 HRc
	After soft annealing 840°C / oven After hardening 1180-1240°C	approx. 25 HRc
	and annealed 530°C 2 h	63 HRc

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	27,1	60- 90
3,2	350	46,7	80-120
4,0	450	93,3	120-160

DIN 8555: E10-UM-60-GR

Coating type:

Basic

Arc voltage: 60V

Approvals:

Current:

~ =+

Tip colour:

Welding positions:

Printing:

HARDMELT 638

Hardmelt 638 is our basic coated high efficiency (205%) electrode for wear resistant surfacing parts subject to grinding abrasion and moderate impact. Deposit weld metal is a near eutectic mix of chromium carbides and austenite, hardness of pure weld metal is 60 HRc. After welding the deposit can be machined by grinding, due to the homogeneous and finely rippled seam this is, for most applications, not necessary.

Applications:

Hardmelt 638 produces an abrasion resistant deposit and is particularly suitable for applications involving grinding abrasion with moderate impact at service temperatures up to 600°C. The weld deposit is extreme resistant to mineral wear. Hardmelt 638 is also suited as a final layer on tough-hard deposits (Hardmelt 600) or high Mn-steel (Manganil).

Typical applications are found in heavy constructions, mining, stone crushing and dredging industries e.g. shovel and dragline buckets, bucket teeth, scraper cutters, scoop lift buckets, crusher hammers, cement mixers, dredge pump parts, rubber industry mixing machines, shaker pans, excavator buckets, gyratory and impact crusher parts, conveyor screws

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	On request	-	-	-

Chemical composition, wt. % weld metal - typical:

C	Mn	Si	s	Р	Cr	Ni	Мо	Cu	Nb	٧	W
5,20	0,50	1,60			31,8						

Mechanical properties, weld metal - typical:

Condition	Hardness	
As welded	1 layer	60 HRc
	1 layer on steel with C = 0,15%	approx. 55 HRc
	1 layer on high Mn-steel	approx. 52 HRc

Dia.	Length	Weight (kgs) 1000 pcs.	Current
mm.	mm.	1000 pcs.	А
3,2	350	53,5	110-140
4,0	350	81,5	160-190
5,0	450	174,2	220-260

Stick electrodes - repair & maintenance - wear resistant

DIN 8555: E10-UM-60-GR

Coating type:

Basic

Arc voltage: 50V

Approvals:

asic •

Tip colour:

Current:

Welding positions:

Printing:

SUGARHARD E10-UM-60-GR

Sugarhard is our basic coated high efficiency (205%) electrode for roughening the wet mill rollers used in the sugar cane crushing process. Striking the arc with Sugarhard is very easy and the welding characteristics are superb in the environment to which the electrodes are exposed. The welding is done with a striking arc roughening the roller surface during processing with wear resistant chromium carbide globules; hardness of pure deposit weld metal is 63 HRc.

Applications:

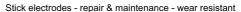
Enormous rollers are used in the sugar cane crushing process and are subject to excessive wear during the season. These rollers have to be continuously welded, even when the process is in full swing. The roller, which is located near the end of the crushing process, is smothered in crushed, sludgy cane and its surface is wet. Sugarhard accommodates these conditions and deposits a dispersion of small, hard and very wear-resistant globules that fastens to the side walls of the ridges of the roller.

Roller arcing (welding methode)

For arcing of sugar mill rollers you have to hold the Sugarhard electrode at right angles to the flans of the profile. Maintain contact with the electrode coating and the base material. Use "cold welding" technique, avoid excessive heat in the weld area.

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	On request	-	-	-


Chemical composition, wt. % weld metal - typical:

1	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	W
	3,5	1,0	4,5			20,0						

Mechanical properties, weld metal - typical:

I	Condition	Hardness	
ſ	As welded	Deposit weld metal	63 HRc

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
3,2	450	72,5	110-130
4,0	450	104,0	160-210

DIN 8555: E10-UM-65-GR

Coating type:

Basic

Arc voltage: 45V

Approvals:

Current:

Tip colour:

Welding positions:

Printing:

HARDMELT 643

Hardmelt 643 is our basic coated high efficiency (190%) electrode for wear resistant surfacing parts subject to severe abrasion and moderate impact. Deposit weld metal has an austenite structure with Nb and Cr carbides, hardness of pure weld metal is 62 HRc. After welding the deposit can be machined by grinding, due to the homogeneous and finely rippled seam this is, for most applications, not necessary.

Applications:

Hardmelt 643 produces an abrasion resistant deposit and is particularly suitable for applications involving heavy grinding abrasion with moderate impact at service temperatures up to 500°C. The weld deposit is extreme resistant to mineral wear.

Typical applications are found in cement industries e.g. hardfacing cement presses, brick presses, refractory pressscrews, conveyor screws, mixer blades, spreader cones, feeder blades, kiln trunnions

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	On request		ı	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	W
6,50	1,50	1,50			24,5				7,0		

Mechanical properties, weld metal - typical:

Condition	Hardness	
As welded	1 layer	62 HRc
	1 layer on steel with C = 0,15%	approx. 55 HRc
	1 layer on high Mn-steel	approx. 52 HRc

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
3,2	350	53,5	110-140
4,0	350	81,5	140-190

DIN 8555: E10-UM-65-GR

Coating type:

Basic

Arc voltage: 45V

Approvals:

Current:

Tip colour:

Welding positions:

Printing:

HARDMELT 645

Hardmelt 645 is our basic coated high efficiency (250%) electrode for wear resistant surfacing parts subject to severe abrasion and moderate impact. Deposit weld metal has a premium carbide structure with Nb, Cr, Mo, W and V carbides; hardness of pure weld metal is 63 HRc. After welding the deposit can be machined by grinding, due to the homogeneous and finely rippled seam this is, for most applications, not necessary.

Applications:

Hardmelt 645 produces an abrasion resistant deposit and is particularly suitable for applications involving severe sliding mineral abrasion with moderate impact at service temperatures up to 600°C.

Typical applications are found in cement and steel industries e.g. hardfacing excavator teeth, bag packer screws, pulverizer mill components, spreader cones, conveyor and mixer screws, fan blades, shredder knives, dredge pumps parts, sintering plant parts, wear bars and plates, scraper bars, blast furnace, cement furnaces, bucket teeth and lips

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	On request		ı	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	W
5,80	1,50	1,90			21,0		6,0		6,0	1,2	2,5

Mechanical properties, weld metal - typical:

Condition	Hardness	
As welded	1 layer	63 HRc
	1 layer on steel with C = 0,15%	approx. 58 HRc
	1 layer on high Mn-steel	approx. 55 HRc

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
4,0	450	129,4	140-190
5,0	450	209,0	210-290

Manganil

AWS A5.13: E FeMn-B DIN 8555: E7-UM-200-KP

Coating type:

Basic

Arc voltage: 60V

Approvals:

Current:

Tip colour:

Welding positions:

Printing:

HILCO MANGANIL

Manganil is our basic coated electrode for joining and wear resistant surfacing manganese steels (Hadfield 14Mn steels). Deposit weld metal is austenitic 14% Mn steel that rapidly work hardens under heavy impact and battering. Hardness of pure weld metal is 200 HB, after work hardening this hardness increases to 52 HRc. After welding the deposit can be machined using carbide tipped tools.

Applications:

Manganil is ideally suitable under conditions of heavy impact and gouging with moderate abrasion and friction. Ideally suitable for applications involving rolling, sliding and metal-to-metal wear. Manganil may be used for joining 14Mn steels in low stress conditions.

Applications are universal but typical for building up manganese steel parts e.g. rail equipment, heavy crushing equipment, crusher mantles and liners, swing and crusher hammers, toothed crusher rolls, ore crusher crown wheels, shovel and dredging buckets, dredge pumps parts, frogs, switches, rail ends, cross-overs

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	On request	-	•	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	W
0,95	13,7	0,10			3,8	3,6	0,7				

Mechanical properties, weld metal - typical:

Condition	Hardness	
As welded	deposit	200 HB
	work hardened	approx. 52 HRc

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
3,2	450	50,4	110-140
4,0	450	76,9	140-180
5,0	450	125,0	180-230

AWS A5.15: E Ni CI

DIN 8573: E Ni BG 22

Coating type:

Basic

Approvals:

Arc voltage: 60V

Current:

Tip colour:

Welding positions:

Printing:

HILCO PURE NICKEL / E Ni CI

Pure Nickel is our basic coated electrode for cold welding grey and malleable cast iron grades and for joining these base metals to steel, copper and copper alloys. The electrode deposits a high-grade pure nickel weld metal: ideal for repair welding cracked and worn castings including highly contaminated cast materials. Both weld metal and HAZ are soft and easily machinable using files. Pure Nickel is ideally suited for the combined welding with Nickel Iron (E NiFe CI), buttering with Pure Nickel and filling with Nickel Iron.

Base materials to be welded:

- Lammelar grey cast irons GG10 to GG40
- Malleable cast irons GTS35-GTS 60, GTW35-GTW60
- Joining and repairing
- Dissimilar joining cast iron to steel, copper, copper

Applications:

- Repair shops
- Casings of machines, pumps, gear boxes, piston arooves

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	-	-	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	s	Р	Cr	Ni	Мо	Cu	Nb	Fe	Al
0,50	0,20	0,10				Bal.				2,3	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 220	-	-	175 HB

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
2,5	350	20,4	55- 90
3,2	350	33,5	80-120
4,0	350	49,0	100-145

AWS A5.15: E Ni Fe CI

DIN 8573: E Ni Fe BG 22

Coating type:

Basic

Arc voltage: 60V

Approvals:

Current:

Tip colour: Orange

Welding positions:

Printing:

HILCO E NiFe CI / NICKEL IRON

Nickel Iron is our basic coated electrode for repair, construction and production welding all cast commercial iron grades including grey, malleable, nodular and phosphorous (P > 0,02%) cast iron.

The electrode deposits a high-grade nickel-iron weld metal: ideal for highly restrained or thick walled workpieces including applications where toughness and crack resistance is important. Both weld metal and transition zone are easily machinable using cutting tools.

Base materials to be welded:

- Lammelar grey cast irons GG10 to GG40
- Malleable cast irons GTS35-GTS 65. GTW35-GTW65
- Nodular cast irons GGG40-GGG70
- Joining and repairing
- Dissimilar joining cast iron to steel

Applications:

- Repair shops
- Casings, machine frames, engine blocks, cylinders, valves

Equivalent product in alternative welding process:

_										
	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing				
	-	On request	On request	-	-	-				

Chemical composition, wt. % weld metal - typical:

The state of the s											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Al
0,90	0,80	0,70				53,0				Bal.	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 340	≥ 500	≥ 18	190 HB

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	18,5	55-75
3,2	350	31,3	80-100
4,0	350	45,5	100-125
5,0	350	72,5	125-160

AWS A5.13: E CoCr-A

DIN 8555: E20-UM-40-CTZ

Coating type:

Basic

Arc voltage: 60V

Approvals:

Current:

=+

Tip colour:

Welding positions:

Printing:

HILCOSTEL 6E

Hilcostel 6E is our basic coated electrode for high-grade surfacing parts subject to a combination of metal-to-metal wear, impact, pressure, abrasion, erosion, corrosion, cavitation and high temperatures up to 900°C. Deposit weld metal is Co-Cr-W alloyed, hardness is 40-42 HRc, has excellent gliding characteristics, good polish ability, good toughness, is non-magnetic. After welding the deposit can be machined by grinding or with tungsten carbide cutting tools.

Applications:

Hilcostel 6E produces a cobalt base weld metal, resistant to metal-to-metal wear or erosion at service temperatures up to 900°C. Weld metal is highly resistant to the most aggressive chemicals.

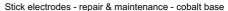
Applications are universal but typical for hardfacing parts e.g. running and sealing faces on gas, water, steam and acid fittings, valve seats and cones for combustion engines, gliding surfaces metal-to-metal, highly stressed hot working tools without thermal shock, milling mixers, drilling tools.

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
=		On request	Hilcostel 6T	-	Hilcostel 6T

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	W
1,10	-	-			27,5						4,5


Note: Co = balance

Mechanical properties, weld metal - typical:

Condition	Hardness	
As welded	1 layer	40-42 HRc
	Hardness at 600°C	approx. 33 HRc

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
3,2	300	24,0	70-110
4,0	350	35,1	90-130

AWS A5.13: E CoCr-B

DIN 8555: E20-UM-50-CSTZ

Coating type:

Rutile

Arc voltage: 60V
Approvals:

Current:

Tip colour:

Welding positions:

Printing:

HILCOSTEL 12E

Hilcostel 12E is our rutile coated electrode for highly wear resistant surfacing parts subject to a combination of metal-to-metal wear, abrasion, erosion, corrosion, pressure and high temperatures up to 900°C. Deposit weld metal is Co-Cr-W alloyed, hardness is 48-50 HRc. After welding the deposit can be machined by grinding or with tungsten carbide cutting tools.

Applications:

Hilcostel 12E produces a cobalt base weld metal, resistant to metal-to-metal wear or erosion at service temperatures up to 900°C. Weld metal is highly resistant to the most aggressive chemicals.

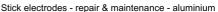
Applications are universal but typical for hardfacing parts e.g. running, sealing and gliding faces on fittings and pumps, tools for wood, paper, plastic, shredding tools, highly stressed hot working tools without thermal shock

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
=		On request	Hilcostel 12T	-	Hilcostel 12T

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	W
1,60	-	-			29,0						8,5


Note: Co = balance

Mechanical properties, weld metal - typical:

Condition	Hardness	
As welded	1 layer	48-50 HRc
	Hardness at 600°C	approx. 40 HRc

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A		
3,2	300	37,8	70-110		
4,0	350	59,5	90-130		

AWS A5.3: E 4043 DIN 1732: EL-AI Si 5 Werkstoffnr. 3.2245

Coating type:

Special

Arc voltage: 65V

Approvals:

Current:

=+

Tip colour:

Welding positions:

Printing:

Aluminil Si 5 is our special coated aluminium electrode for welding, repairing and surfacing forged and cast aluminium-silicon alloys and joining dissimilar aluminium alloys with max. 7%Si content. The easy flowing characteristics make the electrode suitable for welding all aluminium castings (except AIMg castings). The electrode has a pure white coating specifically designed to reduce moisture pick-up. For thicker plate materials (≥15 mm.) it is recommended to preheat at 150°C to 250°C before welding.

Base materials to be welded:

- Aluminium-MgSi alloys
- · Aluminium-Mg alloys up to 2,5% Mg
- Aluminium-MnCu alloys
- Aluminium-Si cast alloys
- Joining dissimilar aluminium alloys

Applications

- Construction works (aluminium base metals)
- Shipyards/offshore
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	AL Si 5	-	AL Si 5	-	Fluxcored AL Si5

Chemical composition, wt. % weld metal - typical:

 The state of the s											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,05	5,0						0,05			Bal.

Note: Zn 0,10 - Fe 0,20

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 90	≥ 160	≥ 15	40-55 HB

Dia.	Length	Weight (kgs)	Current
mm.	mm.	1000 pcs.	Α
2,5	350	9,0	60-90
3,2	350	13,2	80-110
4,0	350	20,4	110-150

Aluminil Si12

Stick electrodes - aluminium

AWS A5.3: E 4047 DIN 1732: EL-AI Si 12 Werkstoffnr. 3.2585

Coating type:

Special

Arc voltage: 65V

Approvals:

Current:

=+

Tip colour:

Welding positions:

Printing:

Aluminil Si 12 is our special coated electrode developed for welding all types of aluminium castings and applications where good colour matching with base materials is important. Typical applications include repair welding, surfacing and construction welding: window frames, aluminium tubes, furniture, aluminium castings, engine blocks, automotive parts. The electrode has a pure white coating specifically designed to reduce moisture pick-up. For thicker plate materials (\geq 15 mm.) it is recommended to preheat at 150°C to 250°C before welding.

Base materials to be welded:

 Aluminium-Si cast alloys up to 12% Si content: G-AlSi 12 (Cu), G-AlSi 10 Mg (Cu), G-AlSi 6 Cu 4

Applications:

- Construction works (aluminium base metals)
- · Repair shops

Equivalent product in alternative welding process:

		Tanning process			
SMAW GMAW		FCAW	GTAW	SAW	Gas welding / brazing
-	AL Si 12	=	AL Si 12	=	AL Si 12

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,10	12,0						0,05			Bal.

Note: Zn 0,10 - Fe 0,40

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 80	≥ 180	≥ 5	50 HB

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	8,8	60-90
3,2	350	13,2	80-110
4,0	350	19,6	110-150

Welding positions:

AWS A5.6: E CuSn-C DIN 1733: EL-CuSn7 Werkstoffnr 2.1025

Coating type:

Approvals:

Basic

Current:

=+

Tip colour: Printing:

Gold E CuSn / C Bronsil

Bronsil is our basic coated tin-bronze electrode for joining and surfacing copper and copper alloys, phosphor- and tin-bronzes as well as copper-clad plates in mechanical and plant engineering and shipbuilding. The electrode is also suitable for cladding steel and minor repair jobs in cast iron and C/Mn steel. Typical applications include repairing rotors and ship screws.

Base materials to be welded:

- Tin-bronze alloys CuSn 2, CuSn 6, CuSn 8, CuSn 6 Zn
- WNr. 2.1010, 2.1020, 2.1030, 2.1080

Applications:

- Shipyards/offshore
- · Repair shops
- Petrochemical industry

Equivalent product in alternative welding process:

Equitations product	Equitations product in assortative wording proceeds										
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing						
-	Tinbronze 94-6	-	Tinbronze 94-6	-	-						

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Sn	Fe	Мо	Cu	Nb	٧	Al
	1,50	0,50	0,010	0,15	7,50	0,20		Bal.			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 200	≥ 280	≥ 25	<u>></u> 100 HB

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	21,7	60-80
3,2	350	34,5	80-100
4,0	350	68,2	100-120

AWS A5 6: F CuNi DIN 1733: EL-CuNi 30 Mn

Werkstoffnr 2.0837

Current: Coating type:

Basic

Welding positions:

Approvals: Tip colour: Printing: HILCO E Cu Ni

Cuni is our basic coated copper-nickel electrode for joining and surfacing alloys of similar composition with up to 30% nickel as well as non-ferrous alloys and dissimilar steel grades. The deposit weld metal is highly resistant to seawater, typical applications include usage in shipbuilding, oil refineries, food processing industry, the engineering of general corrosion proof vessels and equipment.

Base materials to be welded:

- Copper-nickel alloys up to 30% Ni content
- CuNi30Mn, CuNi30Mn1Fe, CuNi10Fe1Mn, CuNi20Fe, CuNi25, CuNi44Mn
- WNr. 2.0890, 2.0882, 2.0872, 2.0878, 2.0830, 2.0842
- Dissimilar joining nickel to copper-nickel alloys

Applications:

- Shipyards/offshore
- Repair shops
- Petrochemical industry
- Food processing industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	Cunifer 70/30	-	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Sn	Fe	Мо	Cu	Ni	٧	Al
0,015	1,80	0,40	0,010	0,15		0,60		Bal.	30,0		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 240	≥ 390	≥ 25	105 HB

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
3,2	350	34,5	80-105
4,0	350	68,2	110-130

hilaa

Coating type:

Special

Arc voltage: 70V

Approvals:

Current:

Tip colour: Violet Welding positions:

Printing: CUTIL

Cutil is our electrode for cutting, gouging, chamfering and piercing of all metals, including stainless, aluminium, cast iron and non ferrous alloys. Cutil guarantees welders easy performance, high cutting and gouging rates and easy handling. Take precautions when using: when grooving it is advised to lift the work so that the molten parent metal can run off better. The electrode should be set as horizontal as possible to the workpiece and kept in contact constantly. Push the electrode slightly to increase the working speed.

Base materials to be welded:

- Structural steels
- Stainless steels
- Aluminium
- Nickel allovs
- Cast iron

Applications

· All industries related to welding

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
3,2	350	37,9	130-180
4,0	450	72,9	170-230
5,0	450	107,1	210-390

Carbon gouging rods

Air carbon arc cutting (CAC-A) rods - cutting & gouging

Coating type: Copper coated Current:

Arc voltage: 35-55V - power source needs OCV ≥ 60V

Carbon gouging rods are copper-coated air carbon arc cutting rods made from a mixture of graphite and pure carbon. Typical applications can be found in every field of metalworking, in foundries, steel constructions, shipbuilding, repair & maintenance. Carbon gouging rods are used for weld edge preparations, back-gouging in multipass welding, removing unsatisfactory welds, bolt and wire ends, spatter removal, all kinds of cutting.

Base materials to be welded:

- · Carbon, low-alloyed steels
- Stainless steels
- Aluminium
- Nickel alloys
- Cast iron
- Copper alloysMagnesium

Applications

· All industries related to welding

Process description, recommendations for usage

Carbon gouging rods remove molten metal with a jet of air. The intense heat of an arc between the carbon-graphite electrode and a workpiece melts a portion of the metal, while simultaneously a jet of air is passed through the arc to blow away the molten metal. The process (Air carbon arc cutting - CAC-A) is used for cutting and gouging, and it can be done manually or mechanized. Carbon steel, stainless steel, copper alloys, cast irons, aluminium, magnesium and nickel alloys can all be cut with Carbon gouging rods. The process requires an electrode holder, cutting electrodes, a power source and an air supply. Manual electrode holders are similar to shielded metal arc electrode holders (stick electrode holders). The electrode is held in a rotatable head containing air orifices. A valve is provided to turn the air on and off. Carbon gouging rods are round, pointed and copper coated. They are intended to use at DC current.

Base material	Electrode	Current	Remarks
Carbon, low-alloyed steels	DC	= +	-
Stainless steels	DC	= +	-
Aluminium	DC	= +	Extend electrode no more than 10 cm.
Nickel alloys	DC	= -	-
Cast iron	DC	= -	At middle of electrode current range
	DC	= +	At maximum current only
Copper alloys	DC	= +	At maximum current only
Magnesium	DC	= +	Clean surface before welding

Dia.	Length	Current
mm.	mm.	Α
4,0	305	90-150
5,0	305	150-200
6,3	305	200-400
8,0	305	250-450
10,0	305	350-600

AWS A5.18: ER70S-6

EN 440: G 42 2 C G3 Si 1 / G 42 4 M G3 Si 1

Wire type: MAG Solid wire Current:

Welding positions:

Approvals:

Shielding gas:

 $C1 = CO_2$, $M11-M32 = ArCO_2-ArCO_2O_2$ including $M21 (1) = ArHeCO_2$

SG 2 is our copper coated solid wire for MAG welding unalloyed and low alloyed, incl. fine grain types, structural steels. Typical applications include: general constructions, shipbuilding, bridges, tanks etc.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry
- Repair Shops
 - Car industry

Equivalent product in alternative welding process:

Si	MAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Red	d Extra	-	Hilcord 40	Fer SG 2	H100 / HW530	Fer G 1

Chemical composition, wt.% weld metal - typical:

١	С	Mn	Si	S	P	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,10	1,50	0,85	≤ 0,025	≤ 0,025							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 430	≥ 510	≥ 22	-20°C ≥ 70

Note: properties under M21 = ArCO₂ gas shielding

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
0,6	S200	5	60-140	16-20
0,8	S200	5	80-180	17-20
0,6	S300	15	60-140	16-20
0,8	S300	15	80-180	17-20
0,9	S300	15	100-200	17-22
1,0	S300	15	120-240	17-22
1,2	S300	15	160-260	18-26

AWS A5.28: ER 80S-G (nearest ER 80S-B2)

EN 12070: G CrMo 1 Si

Wire type:

MAG Solid wire

Current:

Welding positions:

Approvals: TüV

Shielding gas:

 $M11-M33 = ArCO_2-ArCO_2O_2$

SG CrMo1 is our solid wire for MAG welding low alloyed fine grain and creep resisting steels like 13CrMo4 5 up to a maximum operating temperature of 550°C. Typical applications include the construction of pressure vessels, boilers and pipes.

Base materials to be welded:

- Boiler steel 13CrMo4-5, 15CrMo5, 16CrMoV4, A 333 Grade P 11, P 12, G-17CrMo5-5, 22Mo4, G-22CrMo 5-4, 42CrMo4.
- Heat treatable steels up to 780 MPa tensile strength
- · Case hardening and nitriding steels

Applications:

- · Pressure vessel & boiler industry
- Pipelines
- Repair shops
- · Heat exchanger industry
- Steel mills
- Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 19 CrMo	-	Hilcord 61M	SG CrMo1	H100CrMo1/HW530	-

Chemical composition, wt.% weld metal - typical:

		, ,	,								
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,10	1,00	0,60	≤ 0,025	≤ 0,025	1,20		0,50				

Note: AWS spec. ER80S-B2 Mn 0,40-0,70%

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
Stress relieved	≥ 460	≥ 560	≥ 26	+20°C ≥ 47

Notes: stress relieved condition 680°C / 2 h. - preheat, interpass and PWHT are essential for obtaining properties as indicated. For welding 13CrMo4-5 preheat 200-250°C, PWHT 660-700°C min. 1/2 h., cool down slowly

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	Α	V
0,8	BS300	15	80-180	17-20
1,0	BS300	15	120-240	18-26
1,2	BS300	15	160-260	20-29

Hilchrome G307

AWS A5.9: ER 307 EN 12072: G 18 8 Mn Werkstoffnr. 1.4370

Wire type: MAG Solid wire Current:

Welding positions:

1_1

Approvals:

Shielding gas: M12-M13 = ArCO₂-ArO2,

Hilchrome G307 is our solid wire for MAG welding dissimilar steels and difficult-to-weld steels. Typical applications include joining 14Mn steels, spring steels, tool steels, high carbon steels. Hilchrome G307 is recommended for buffer layers prior to surfacing. The deposit weld metal features strain hardenability, excellent cavitation resistance, thermal shock resistance and scaling resistance up to 850°C.

Base materials to be welded:

- Armour plate
- · Hardenable steels incl. DFTW-steels
- Non-magnetic austenitic steels
- Work hardening austenitic manganese steels
- · Heat resisting ferritic chromium steels
- Dissimilar joining

Applications:

- Repair shops
- · Car industry
- Heat exchanger industry
- Cement industry
- Railways
- · Cane sugar industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 307R	-	Hilcord 82	Hilchrome W307	S307 / HW100	-

Chemical composition, wt.% weld metal – typical:

		,									
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0.08	7.00	0.80			19.00	9.00					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 320	≥ 600	≥ 35	+20°C ≥ 80

Note: properties under M13 = ArO₂ gas shielding

Dia. mm.	Spooltype Weight / Curent spool kg. A			Voltage V		
0,8	BS300	12,5	60-90	18-24		
1,0	BS300	15	80-140	18-25		
1,2	BS300	15	100-250	18-26		
1,6	BS300	15	180-300	20-30		

Hilchrome G312

MAG wires - repair & maintenance - stainless steel

AWS A5.9: ER 312 EN 12072: G 29 9

Werkstoffnr. 1.4337

Wire type: MAG Solid wire Current:

Welding positions:

1_1

Approvals:

Shielding gas: M12-M13 = ArCO₂-ArO₂

Hilchrome G312 is our solid wire for MAG welding which is to be considered as a problem solver for all kinds of steel grades incl. stainless and difficult-to-weld steels. Typical applications for this WELD-ALL include joining hard manganese steels, tool steels, spring steels, buffering as well as joining dissimilar steel grades. Hilchrome G312 deposits a crack-resistant weld metal with an increased ferrite content of approx. FN50.

Base materials to be welded:

- High strength, unalloyed and alloyed heat treatable steels; stainless, ferritic chromium and austenitic CrNi steels; austenitic manganese steels
- Chemically resistant weld claddings ranging from ferritic-pearlitic steels to fine grain steels, incl. high temperature fine grain steels
- Dissimilar joining

Applications:

- · Boiler & pressure vessel industry
- Repair shops
- Gas industry
- · Cane sugar mills
- Cement industry
- Petrochemical industry
- Mine industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 312R	-	-	Hilchrome W312	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,15	1,60	0,50			30,0	9,0					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 500	≥ 750	≥ 20	+20°C ≥ 30

Note: properties under M13 =ArO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
1,0	BS300	15	80-140	18-25
1,2	BS300	15	100-250	18-26

Hilchrome G600

AWS A5.14: ER NiCr-3

DIN 1736: MSG-NiCr 20 Nb

Werkstoffnr. 2.4806

Wire type:

MIG Solid wire

Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome G600 is our solid wire for MIG welding high-grade nickel-base alloys like Inconel® 600. Typical applications include joining and surfacing high-temperature and creep resisting steels, heat resisting and cryogenic materials i.e. cold-tough steels (9% Ni), dissimilar joining and low-alloyed problem steels. Hilchrome G600 is suitable for usage between -196°C up to +650°C, maximum operating temperature of 1200°C (in a S-free environment), highly resistant to hot cracking.

Base materials to be welded:

- ASTM/AISI Grade Alloy 600/B168, Alloy 75, Alloy 80A
- Inconel® 600, 601, 690 Incolov® 800
- WNr. 2.4816, 2.4951, 2.4952
- NiCr15Fe and nickel alloys of similar composition
- Ni-steel up to and including 9% Ni
- Dissimilar joining

Applications:

- Pressure vessel & boiler industry
- Repair shops
- Gas industry (incl. LNG applications)
- Heat exchanger industry
- Paper mills
- Cement industry
- Petrochemical industry

Equivalent product in alternative welding process:

S	SMAW G		FCAW	GTAW	SAW	Gas welding / brazing		
Hilch	rome 600	-	ı	Hilchrome W600	ı			

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Ti
0,10	2,80	0,50	≤ 0,015	≤ 0,030	20,0	Bal.			2,50	3,00	0,80

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 400	≥ 640	≥ 35	+20°C ≥ 150 -196°C > 40

Note: properties under pure Argon gas shielding

Dia.	Length	Weight / package kg.	Current	Voltage	
mm.	mm.		A	V	
1,2	BS300	15	100-250	18-26	

DIN 8555: MSG 2-GZ-400

Werkstoffnr, 1,8405

Wire type: MAG Solid wire Current:

Welding positions:

Approvals:

Shielding gas:

 $C1 = CO_2$, $M11-M32 = ArO_2-ArCO_2$

H-350 is our solid wire for wear resistant surfacing on low-alloy steel subject to metal-to-metal wear, but also impact and mild abrasion. Deposit weld metal has a martensitic structure, hardness of pure weld deposit approx. 350HB. After welding the deposit can easily be machined by grinding.

Applications:

H-350 is particularly suitable under conditions of moderate abrasion and friction, combined with impact. Ideally suitable for applications involving rolling, sliding and metal-to-metal wear. H-350 may also be used as a final overlay on parts that need to be machined or as a build-up layer for hardfacing materials providing higher wear resistance.

Applications are universal but typical for building up parts e.g. repair of worn switches and rails, tractor and shovel parts, dragline chains, cable sheaves, shovel and bucket lips, dredge pump parts, cutter teeth, pump impellers and housings, dredge and shovel bucket teeth, mill and crushing hammers. Hardfacing crane and mine car wheels, tractor rolls, idlers, links and sprockets, cable drums, roller guides, transmission parts

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hardmelt 350	-	On request	-	H60/HW400	-

Chemical composition, wt. % weld metal - typical:

С	Mn		Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,70	1,90)	0,45			1,00						

Mechanical properties, weld metal - typical:

Condition	Hardness				
As welded	1 layer	450 HB			
	hardened 820-850°C / oil	approx. 62 HRc			
	soft annealed 720-740°C	approx. 200 HB			
	1 layer on unalloyed steel	approx. 350 HB			

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kgs.	A	V
1.2	B300	15	130-260	26-31

DIN 8555: MSG 6-GZ-60-S

Werkstoffnr. 1.4718

Wire type:

MAG Solid wire

Current:

Shielding gas:

Welding positions:

Approvals:

 $C1 = CO_2$, $M11-M32 = ArO_2 - ArCO_2$

H-600 is our solid wire for wear resistant surfacing parts of steel, cast steel and high Mn-steel, subject to abrasion, metal-to-metal wear, impact and/or compression stresses. Deposit weld metal has a martensitic structure, hardness of pure weld deposit approximately 600HB.

After welding the deposit can be machined by grinding only.

Applications:

H-600 is particularly suitable under conditions of heavy abrasion and friction, combined with impact. Ideally suitable for applications involving rolling, sliding and metal-to-metal wear.

Applications are universal but typical for hardfacing parts e.g. agricultural, earth moving and stone crushing industry, hardfacing crane and mine car wheels, sprockets and gear teeth, skip guides, dredger buckets, scrapper blades, transfertables, cable sheaves, tractor and shovel parts, dragline buckets, conveyor chains, hammer heads, clutch jaws

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hardmelt 600	-	Hilcord 600	-	-	-

Chemical composition, wt. % weld metal - typical:

••	one mean composition, that /o motal motal typical.										
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,45	0,40	3,00			9,20						

Mechanical properties, weld metal - typical:

Condition	Hardness	
As welded	1 layer	54-60 HRc
	hardened 1000°C / oil	approx. 62 HRc
	soft annealed 800°C	approx. 250 HB
	1 layer on unalloyed steel	approx. 53 HRc

Dia.	Spooltype	Weight /	Current	Voltage	
mm.	mm.		Α	V	
1,2	S300	15	135-260	26-31	

AWS A5.7: ERCuSn-A DIN 1733: MSG-CuSn6

Werkstoffnr, 2,1022

Wire type:

MIG Solid wire

Current:

Welding positions:

Approvals:

Shielding gas: I1 = Pure Ar

Tinbronze 94-6 is our tin-bronze alloyed solid wire for MIG welding and surfacing copper and copper alloys, phosphor- and tin-bronzes as well as copper-clad plates in mechanical and plant engineering and shipbuilding. Tinbronze 94-6 is also suitable for cladding steel and minor repair jobs in cast iron and C/Mn steel. Typical applications include repairing rotors and ship screws.

Base materials to be welded:

- Tin-bronze alloys CuSn 2, CuSn 6, CuSn 8, CuSn 6 Zn
- WNr. 2.1010. 2.1020. 2.1030. 2.1080

Applications:

- Shipyards/offshore
- Repair shops
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Bronsil	-	-	Tinbronze 94-6	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
				0,25			6,5	Bal.			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 150	≥ 300	20	80 HB

Packaging data:

Dia.	Length	Weight /
mm.	mm.	package kg.
1.2	S300	~12

AWS A5.7: ER CuAl-A1 DIN 1733: MSG-CuAl8 Werkstoffnr. 2.0921

Wire type:

MIG Solid wire

Current:

=+

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Albronze 8 is our Cu-Al alloyed solid wire for MIG welding and surfacing aluminium bronzes like CuAl5, CuAl8. Typical applications include surfacing of copper, brass, special brass (CuZn20Al), unalloyed and low alloyed steels, joining seawater conducting corrosion resistant aluminium bronze or special brass pipelines. For multi-layer surfacing we recommend puls-arc welding.

Base materials to be welded:

- Aluminium bronze alloys: CuAl8Fe3, CuAl10Fe3Mn2, CuAl9Mn2, CuAl10Ni5Fe4
- Cast Aluminium bronzes: G-CuAl8Mn, G-CuAl10Ni,
- Surfacing copper, brass, special brass, steel
- Joining brass (CuZn20Al) pipelines

Applications:

- · Shipyards/offshore
- Pressure vessel & boiler industry
- Repair shops
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
=	-	-	-	-	-

Chemical composition, wt.% weld metal – typical:

Chemical Composition, Wart Wold motal Cypican											
С	Mn	Si	S	Р	Ni	Mg	Fe	Cu	Ti	Zn	Al
								Bal.			8.0

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 180	≥ 430	≥ 40	120 HB

Packaging data:

Dia. mm.	Spooltype	Weight / spool kg.
1,2	S300	~12

AWS A5.20: E 70 T-5 H4 / E 70 T-5 M H4 EN 758: T 42 4 B C 3 H5 / T 42 4 B M 3 H5

Wire type:

Basic cored wire

Current:

Welding positions:

Approvals:

ABS, DNV, LR, TüV

Shielding gas:

 $C1 = CO_2$, $M21 = ArCO_2$, $M33 = ArCO_2O_2$

Hilcord 51 is our seamless copper coated basic flux cored wire for MAG welding unalloyed and low alloyed structural steels. Wire has characteristics typical for basic type consumables: weld deposits have superior impact toughness and crack resistance comparable to stick electrodes type E7018. Hilcord 51 is a guaranteed low hydrogen content wire (H_{DM} < 5 ml/100 gr. deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3. C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industry
- Repair Shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Basic Directa	K 60	-	Fer SG 2	H 100 / HW 530	-

Chemical composition, wt.% weld metal - typical:

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,06	1,50	0,45	≤ 0,025	≤ 0,025							

Mechanical properties, weld metal - typical:

Co	ondition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As	welded	≥ 420	≥ 520	≥ 24	-40°C ≥ 50

Note: properties under M21 = ArCO₂ gas shielding

ĺ	Dia.	Spooltype Weight /		Current	Voltage
	mm.		spool kg.	Α	V
	1,2	B300	16	120-350	18-32
1	1,6	B300	16	200-450	20-34

Cored wires - repair & maintenance - low alloyed steel

AWS A5.28: E 80C-G

EN 12071: T CrMo1 M M 2 H5

Wire type:

Metal cored wire

Current:

=+

Welding positions:

Approvals: TüV

Shielding gas: M21 = ArCO₂

Hilcord 61M is our seamless copper coated metal cored wire for MAG welding low alloyed fine grain and creep resisting steels like 13CrMo4 5 up to a maximum operating temperature of 550°C. Typical applications include the construction of pressure vessels, boilers and pipes. Hilcord 61M is a guaranteed low hydrogen content wire ($H_{DM} < 5$ ml/100 gr. deposit weld metal). The specific properties of seamless cored wires offer you a guaranteed problem-free usage at all times!

Base materials to be welded:

- Boiler steel 13CrMo4-5, 15CrMo5, 16CrMoV4, A 333 Grade P 11, P 12, G-17CrMo5-5, 22Mo4, G-22CrMo 5-4, 42CrMo4,
- Heat treatable steels up to 780 MPa tensile strength
- Case hardening and nitriding steels

Applications:

- · Pressure vessel & boiler industry
- Pipelines
- · Repair shops
- Heat exchanger industry
- Steel mills
- Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

_quu.o p. o u.		iroidiiig processi			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 19 CrMo	SG CrMo1	-	Fer SG CrMo1	H 100CrMo1/HW 580	-

Chemical composition, wt.% weld metal – typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,06	1,00	0,35	≤ 0,015	≤ 0,015	1,00		0,50				

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
Stress relieved	≥ 460	≥ 540	≥ 22	-20°C ≥ 50

Notes: stress relieved condition 680° C / 2 h. - preheat, interpass and PWHT are essential for obtaining properties as indicated. For welding 13CrMo4-5 preheat 200-250 $^{\circ}$ C, PWHT 660-700 $^{\circ}$ C min. 1/2 h., cool down slowly

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kg.	A	V
1,2	B300	16	120-300	17-32

AWS A5.22: E 307 T0-G EN 12073: T 18 8 Mn R M 3

Werkstoffnr, 1,4316

Wire type:

Rutile cored wire

Current:

=+

Welding positions:

Approvals:

Shielding gas: M21 = ArCO₂

Hilcord 82 is our rutile flux cored wire for MAG welding dissimilar steels and difficult-to-weld steels. Typical applications include joining 14Mn steels, spring steels, tool steels, high carbon steels. Hilcord 82 is recommended for buffer layers prior to surfacing. The deposit weld metal features strain hardenability, excellent cavitation resistance, thermal shock resistance and scaling resistance up to 850°C.

Base materials to be welded:

- Armour plate
- · Hardenable steels incl. DFTW-steels
- Non-magnetic austenitic steels
- Work hardening austenitic manganese steels
- · Heat resisting ferritic chromium steels
- Dissimilar joining

Applications:

- Repair shops
- · Car industry
- Heat exchanger industry
- Cement industry
- Railways
- · Cane sugar industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 307R	Hilchrome G307	-	Hilchrome W307	S307 / HW100	-

Chemical composition, wt.% weld metal - typical:

The state of the s											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0.10	7.0	0.70			17.5	8.5					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 450	≥ 630	≥ 35	+20°C ≥ 60
				Hardness 160 HB,
				450HB after deformation

Note: properties under M21 = ArCO₂ gas shielding

Dia. mm.	Spooltype	Weight / spool kg.	Current A	Voltage V
1,2	B300	15	160-200	25-29

DIN 8555: MF 6-60 Werkstoffnr, 1,4718

Wire type: Basic cored wire 1,2 mm. metal cored wire Current:

Welding positions:

Approvals: Shielding gas:
- M21 = ArCO₂

Hilcord 600 is our cored wire for wear resistant surfacing parts of steel, cast steel and high Mn-steel, subject to abrasion, metal-to-metal wear, impact and/or compression stresses. Deposit weld metal has a martensitic structure, hardness of pure weld deposit approximately 600HB.

After welding the deposit can be machined by grinding only.

Applications:

Hilcord 600 is particularly suitable under conditions of heavy abrasion and friction, combined with impact. Ideally suitable for applications involving rolling, sliding and metal-to-metal wear.

Applications are universal but typical for hardfacing parts e.g. agricultural, earth moving and stone crushing industry, hardfacing crane and mine car wheels, sprockets and gear teeth, skip guides, dredger buckets, scrapper blades, transfertables, cable sheaves, tractor and shovel parts, dragline buckets, conveyor chains, hammer heads, clutch jaws

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hardmelt 600	H600	ı	-	ı	-

Chemical composition, wt. % weld metal - typical:

-	The state of the s											
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,50	1,50	0,60	≤ 0,025	≤ 0,025	5,50		0,60				

Mechanical properties, weld metal - typical:

0 HRc

Dia.	Spooltype	Weight /	Current	Voltage
mm.		spool kgs.	Α	V
1,2	B300	16	160-260	18-26
1,6	B300	16	180-300	20-27

AWS A5.18: ER70S-6 EN 1668: W 46 2 W 3 Si 1

2.V 1666. W 16 2 W 6 6.

Wire type:

TIG Solid wire

Current:

Welding positions:

Approvals: TüV

Shielding gas: 11 = Pure Ar

Fer SG 2 is our copper coated wire for TIG welding unalloyed and low alloyed, incl. fine grain types, structural steels. Typical applications include: general constructions, shipbuilding, bridges, tanks etc. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Ships plate A-E, A(H)32-E(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2G3, St.33-St.52.3, C(K)10-C(K)35
- Boiler steel P235GH-P355GH, HI, HII, 17Mn4, 19Mn6
- Fine grain steel P275N-P355NL2, S275N-S420N, StE285-EStE355, StE285TM-EStE355TM
- Pipe steel P235T1-P355N, L210-L415MB, St37.0-St52.4, St45.8, X42-X60, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- Construction works
- Bridge & road constructions
- Pressure vessel & boiler industryRepair Shops
- Car industry

Equivalent product in alternative welding process:

quirtaione produce in alternative inclaining processes								
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing			
Red Extra	K 60	Hilcord 40	-	H100 / HW530	Fer G 1			

Chemical composition, wt.% weld metal - typical:

Officialica	one mean composition, with well metal — typical.										
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
80,0	1,40	0,85	≤ 0.030	≤ 0.030							

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 460	≥ 560	≥ 22	-20°C ≥ 70

Notes: properties under pure Argon gas shielding

Packaging data:

Dia.	Length	Weight /		
mm.	mm.	package kg.		
1,6	1000	5		
2,0	1000	5		
2,4	1000	5		
3,0	1000	5		

Fer SG CrMo1

AWS A5.28: ER 80S-G (nearest ER 80S-B2)

EN 12070: W Cr Mo 1 Si

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals: TüV Shielding gas: 11 = Pure Ar

Fer SG CrMo1 is our solid wire for TIG welding low alloyed fine grain and creep resisting steels like 13CrMo4 5 up to a maximum operating temperature of 550°C. Typical applications include the construction of pressure vessels, boilers and pipes. To be used in combination with tungsten electrodes type Wolfram WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Boiler steel 13CrMo4-5, 15CrMo5, 16CrMoV4, A 333 Grade P 11, P 12, G-17CrMo5-5, 22Mo4, G-22CrMo 5-4, 42CrMo4,
- · Heat treatable steels up to 780 MPa tensile strength
- Case hardening and nitriding steels

Applications:

- · Pressure vessel & boiler industry
- Pipelines
- Repair shops
- Heat exchanger industry
- Steel mills
- Petrochemical industry
- Cement industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
B 19 CrMo	SG CrMo1	Hilcord 61M	-	H100CrMo1/HW580	-

Chemical composition, wt.% weld metal - typical:

-												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,10	1,00	0,60	≤ 0,025	≤ 0,025	1,20		0,50				

Note: AWS spec. ER80S-B2 Mn 0,40-0,70%

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 460	<u>≥</u> 560	≥ 22	+20°C ≥ 100

Note: properties under pure Argon gas shielding

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5

Fer SG CrMo5

TIG rods - repair & maintenance - low alloyed steel

AWS A5.28: ER 80 S B 6

former spec. ER 502 EN 12070: W CrMo 5 Si

Wire type:

TIG Solid wire

Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Fer SG CrMo5 is our solid wire for TIG welding low alloyed fine grain and creep resisting steels like 12CrMo19-5 up to a maximum operating temperature of 600°C. Typical applications include the construction of pressure vessels, boilers and pipes. Fer SG CrMo5 is also used for repair welding forging dies. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Boiler steel 12CrMo19.5, A335 Grade P5, C5 X12CrMo5 (1.7362), G-X12CrMo5 (1.7363)
- Heat treatable steels up to 1180 MPa tensile strength
- · Case hardening and nitriding steels

Applications:

- · Pressure vessel & boiler industry
- Pipelines
- Repair shops
- · Heat exchanger industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW wire	Gas welding / brazing
-	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

Chemical Composition, W. 70 Wela metal Typical.												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
	0,05	0,50	0,40	≤ 0,025	≤ 0,025	5,70		0,60				

Note:

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 500	<u>≥</u> 630	≥ 20	+20°C ≥ 60

Note: properties under pure Argon gas shielding

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	914/1000	5
2,0	914/1000	5
2,4	914/1000	5

Hilchrome W307

TIG rods - repair & maintenance - stainless steel

AWS A5.9: ER 307 EN 12072: W 18 8 Mn Werkstoffnr, 1,4370

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W307 is our solid wire for TIG welding dissimilar steels and difficult-to-weld steels. Typical applications include joining 14Mn steels, spring steels, tool steels, high carbon steels. Hilchrome W307 is recommended for buffer layers prior to surfacing. The deposit weld metal features strain hardenability, excellent cavitation resistance, thermal shock resistance and scaling resistance up to 850°C. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Armour plate
- Hardenable steels incl. DFTW-steels
- Non-magnetic austenitic steels
- Work hardening austenitic manganese steels
- · Heat resisting ferritic chromium steels
- Dissimilar joining

Applications:

- Repair shops
- · Car industry
- Heat exchanger industry
- Cement industry
- Railways
- Cane sugar industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 307R	Hilchrome G307	Hilcord 82	-	S307 / HW100	-

Chemical composition, wt.% weld metal - typical:

Chemical composition, with well metal typical											
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
0,08	7,00	0,80			19,00	9,00					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 320	≥ 600	≥ 35	+20°C ≥ 80

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5

Hilchrome W312

TIG rods - repair & maintenance - stainless steel

AWS A5.9: ER 312 EN 12072: W 29 9 Werkstoffnr, 1,4337

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W312 is our solid wire for TIG welding which is to be considered as a problem solver for all kinds of steel grades incl. stainless and difficult-to-weld steels. Typical applications for this WELD-ALL include joining hard manganese steels, tool steels, spring steels, buffering as well as joining dissimilar steel grades. Hilchrome W312 deposits a crack-resistant weld metal with an increased ferrite content of approx. FN50. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Armour plate
- · Hardenable steels incl. DFTW-steels
- Tool, die and spring steels
- · Austenitic manganese steels
- · Hardfacing clutches, gear wheels, shafts
- Buffer layers prior to hardfacing
- Dissimilar joining

Applications:

- Repair shops
- · Cement industry
- Steel mills
- Mine industry
- Railways
- Cane sugar mills

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 312R	Hilchrome G312	-		-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
0,15	1,60	0,50			30,0	9,0					

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength	Tensile strength	Elongation	Impact Values
	MPa	MPa	Lo=5d - %	ISO-V J
As welded	≥ 500	≥ 750	≥ 20	+20°C ≥ 30

Note: properties under pure Argon gas shielding

Dia. mm.	Length mm.	Weight / package kg.
2,0	1000	5
2,4	1000	5

Hilchrome W600

TIG rods - repair & maintenance - stainless steel

AWS A5.14: ER NiCr-3 DIN 1736: WSG-NiCr 20 Nb

Werkstoffnr. 2.4806

Wire type:

TIG Solid wire

Current:

=-

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Hilchrome W600 is our solid wire for TIG welding high-grade nickel-base alloys like Inconel® 600. Typical applications include joining and surfacing high-temperature and creep resisting steels, heat resisting and cryogenic materials i.e. cold-tough steels (9% Ni), dissimilar joining and low-alloyed problem steels. Hilchrome W600 is suitable for usage between -196°C up to +650°C, maximum operating temperature of 1200°C (in a S-free environment), highly resistant to hot cracking. To be used in combination with tungsten electrodes type WT20.

Base materials to be welded:

- ASTM/AISI Grade Alloy 600/B168, Alloy 75, Alloy 80A
- Inconel® 600, 601, 690 Incoloy® 800
- WNr. 2.4816, 2.4951, 2.4952
- NiCr15Fe and nickel allovs of similar composition
- Ni-steel up to and including 9% Ni
- Dissimilar joining

Applications:

- · Pressure vessel & boiler industry
- · Repair shops
- Gas industry (incl. LNG applications)
- Heat exchanger industry
- Paper mills
- Cement industry
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilchrome 600S	Hilchrome G600	-		-	-

Chemical composition, wt.% weld metal - typical:

		, ,									
С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe	Ti
0,10	2,80	0,50	≤ 0,015	≤ 0,030	20,0	Bal.			2,50	3,00	0,80

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Impact Values ISO-V J
As welded	≥ 400	≥ 640	≥ 35	+20°C ≥ 150 -196°C ≥ 40

Note: properties under pure Argon gas shielding

· workingg was	· using matai							
Dia.	Length	Weight /						
mm.	mm.	package kg.						
1,6	1000	5						
2,4	1000	5						

AWS A5.13: R CoCr-A

DIN 8555: WSG 20-GO-40-CTZ / G 20-GO-40-CTZ

Coating type:

TIG Solid wire OAW Solid wire Current:

=-*

Welding positions:

Approvals:

Shielding gas:

I1 = Pure Ar, Oxy-acetylene

Hilcostel 6T is our solid wire for TIG welding or oxy-acetylene welding parts subject to a combination of metal-to-metal wear, impact, pressure, abrasion, erosion, corrosion, cavitation and high temperatures up to 900°C. Deposit weld metal is Co-Cr-W alloyed, hardness is 40-42 HRc, has excellent gliding characteristics, good polishability, good toughness, is non-magnetic. After welding the deposit can be machined by grinding or with tungsten carbide cutting tools.

Applications:

Hilcostel 6T produces a cobalt base weld metal, resistant to metal-to-metal wear or erosion at service temperatures up to 900°C. Weld metal is highly resistant to the most aggressive chemicals.

Applications are universal but typical for hardfacing parts e.g. running and sealing faces on gas, water, steam and acid fittings, valve seats and cones for combustion engines, gliding surfaces metal-to-metal, highly stressed hot working tools without thermal shock, milling mixers, drilling tools.

Equivalent product in alternative welding process:

SMA	W	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilcoste	l 6E	-	On request	-	-	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	W
1,20	-	-			27,0						4,5

Notes: Co = balance

Mechanical properties, weld metal – typical:

Condition	Hardness	
As welded	1 layer	40-42 HRc
	Hardness at 600°C	approx. 33 HRc

Dia. mm.	Length mm.	Weight / package kgs.
3,0	1000	5
4,0	1000	5

AWS A5.13: ~R CoCr-B

DIN 8555: WSG 20-GO-50-CSTZ / G 20-GO-50-CSTZ

Coating type:

TIG Solid wire OAW Solid wire Current:

* for TIG

Welding positions:

Approvals:

Shielding gas:

I1 = Pure Ar, Oxy-acetylene

Hilcostel 12T is solid wire for TIG welding or oxy-acetylene welding parts subject to a combination of metal-to-metal wear, abrasion, erosion, corrosion, pressure and high temperatures up to 900°C. Deposit weld metal is Co-Cr-W alloyed, hardness is 48-50 HRc. After welding the deposit can be machined by grinding or with tungsten carbide cutting tools.

Applications:

Hilcostel 12T produces a cobalt base weld metal, resistant to metal-to-metal wear or erosion at service temperatures up to 900°C. Weld metal is highly resistant to the most aggressive chemicals.

Applications are universal but typical for hardfacing parts e.g. running, sealing and gliding faces on fittings and pumps, tools for wood, paper, plastic, shredding tools, highly stressed hot working tools without thermal shock

Equivalent product in alternative welding process:

Equivalent product in alternative weiting process.					
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Hilcostel 12E	-	On request	-	-	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	W
1,80	-	-			29,0						8,5

Notes: Co = balance

Mechanical poperties, weld metal - typical:

moonamear poper	typican	
Condition	Hardness	
As welded	1 layer	48-50 HRc
	Hardness at 600°C	approx. 40 HRc

Dia. mm.	Length mm.	Weight / package kgs.
3,0	1000	5
4,0	1000	5

AWS A5.7: ER CuNi DIN 1733: WSG-CuNi30Fe Werkstoffnr. 2.0837

Wire type: TIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Cunifer 70-30 is solid copper-nickel wire for TIG welding and surfacing alloys of similar composition with up to 30% nickel as well as non-ferrous alloys and dissimilar steel grades. The deposit weld metal is highly resistant to seawater, typical applications include usage in shipbuilding, oil refineries, food processing industry, the engineering of general corrosion proof vessels and equipment.

Base materials to be welded:

- · Copper-nickel alloys up to 30% Ni content
- CuNi30Mn, CuNi30Mn1Fe, CuNi10Fe1Mn, CuNi20Fe, CuNi25, CuNi44Mn
- WNr. 2.0890, 2.0882, 2.0872, 2.0878, 2.0830, 2.0842
- · Dissimilar joining nickel to copper-nickel alloys

Applications:

- · Shipyards/offshore
- Repair shops
- Petrochemical industry
- Food processing industry

Equivalent product in alternative welding process:

	<u> </u>	runng process.			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Cuni	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Mg	Fe	Cu	Ti	Zn	Al
	1,00				31,0		0,50	Bal.	0,40		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 200	≥ 420	≥ 30	115 HB

Dia.	Length	Weight /
mm.	mm.	package kg.
1,5	1000	5
2,0	1000	5
2,5	500	5
2,5	1000	5

Fluxcored AL 99,5

Gas welding rods - repair & maintenance - aluminium

AWS A5.10: ER 1100 DIN 1732: G-Al 99,5 Werkstoffnr, 3.0259

Wire type: OAW Cored wire Welding positions:

→

Approvals:

Shielding gas: Oxy-acetylene

Fluxcored AL 99,5 is our flux cored aluminium wire rod for oxy-acetylene gas welding, repairing and surfacing pure aluminium and wrought aluminium alloys. The internal flux core makes the need of additional fluxes unnecessary.

Base materials to be welded:

- Pure aluminium acc. to DIN 1712 Al 99,8 and Al 99
- Pure aluminium Werkstoff nr. 3.0285 and 3.0205
- Similar aluminium and wrought aluminium alloys

Applications:

- Construction works (aluminium base metals)
- Repair shops

Equivalent product in alternative welding process:

SMAW		GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Aluminil 99	8	AL 99,5		AL 99,5	-	1

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
											> 99,5

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical p	properties
As welded	≥ 70	≥ 130	≥ 16	Melting range 647-658°C	Density -

Dia.	Length	Weight /
mm.	mm.	package kg.
3,0	820	1

Fluxcored AL Si5

Gas welding rods - repair & maintenance - aluminium

AWS A5.10: ER 4043 DIN 1732: G-AlSi 5 Werkstoffnr, 3,2245

Wire type: OAW Cored wire Welding positions:

→

Approvals:

Shielding gas: Oxy-acetylene

Fluxcored Aluminium 5Si is our flux cored aluminium wire rod for oxy-acetylene gas welding, repairing and surfacing forged and cast aluminium-silicon alloys and joining dissimilar aluminium alloys with max. 7%Si content. The internal flux core makes the need of additional fluxes unnecessary.

Base materials to be welded:

- · Aluminium-MgSi alloys
- Aluminium-Mg alloys up to 2,5% Mg
- Aluminium-MnCu alloys
- Aluminium-Si cast alloys
- · Joining dissimilar aluminium alloys

Applications:

- Construction works (aluminium base metals)
- · Shipyards/offshore
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Aluminil Si 5	AL Si 5	-	AL Si 5	-	AL Si 5

Chemical composition, wt.% weld metal - typical:

1	С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
		0,30	5,0									Bal.

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical p	properties
As welded	≥ 70	≥ 130	≥ 16	Melting range 573-625°C	Density -

Dia.	Length	Weight /
mm.	mm.	package kg.
3,0	820	1

AWS A5.8: ~RB CuZnA

EN 1044: ~CU 304

DIN 1733: L-SoMs 60 / DIN 8513: ~L-CuZn39Sn

Werkstoffnr, 2,0531

Wire type: OAW Solid wire Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Bronze C is our low fuming bronze (brass) brazing rod for joining and surfacing steel, copper and copper alloys, brass, grey and malleable cast iron, nickel and nickel alloys. Bronze C produces poreless joints, color matching with brass. Applications are universal but typical for joining galvanized steel (without destroying its zinc layer), joining non-ferrous metals, tube structures, sanitary installations, fitting and repair work, bicycles, motorcycles, automotive industries, furniture industry. The Mn content guarantees strong and high quality joints.

Base materials to be welded:

- Similar and dissimilar joining
- To be used in combination with HILCO Bronze Flux.

Applications:

- · Shipyards/offshore
- Constructionworks
- Repair shops
- · Car industry/assembling
- Bicycle industry
- Office furniture industry
- Marine equipment

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	1	ı	-	-	Bronze F, Autobronze

Chemical composition, wt.% weld metal - typical:

 		, ,									
၁	Mn	Si	S	Р	Ni	Sn	Fe	Cu	Ti	Zn	Al
	0,60	0,40			≤ 0,01	0,35	≤ 0,10	60,0		Bal.	≤ 0,005

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 490	≥ 35	870-900°C

Dia.	Length	Weight /
mm.	mm.	package kg.
1,5	1000	5
2,0	1000	5
2,5	1000	5
3,0	1000	5
4,0	1000	5
5,0	1000	5

Gas welding rods - repair & maintenance - brazing

AWS A5.8: RB CuZnA

EN 1044: CU 301 DIN 8513: L-CuZn40

Werkstoffnr, 2,0367

Wire type:

OAW Solid wire (fluxcoated)

Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Bronze F is our flux coated low fuming bronze (brass) brazing rod for joining and surfacing steel, copper and copper alloys, brass, grey and malleable cast iron, nickel and nickel alloys. Bronze F produces poreless joints, color matching with brass. The flux coating makes use of additional brazing fluxes unnecessary.

Base materials to be welded:

· Similar and dissimilar joining

Applications:

- Shipyards/offshore
- Constructionworks
- · Repair shops
- · Car industry/assembling
- Bicycle industry
- Office furniture industry
- Marine equipment

Equivalent product in alternative welding process:

SMA	W	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-		ı	-	-	-	Bronze C, Autobronze

Chemical composition, wt.% weld metal - typical:

1	С	Mn	Si	S	Р	Ni	Sn	Fe	Cu	Ti	Zn	Al
			0,30				0,20		60,0		Bal.	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 350	≥ 35	875-895°C

Dia.	Length	Weight /
mm.	mm.	package kg.
2,0	500	2,5
2,5	500	2,5
3,0	500	2,5

Welding positions:

AWS A5.8: RB CuZn-D

EN 1044: CU 305

DIN 8513: L-CuNi10Zn42

Werkstoffnr. 2.0531

Wire type:

OAW Solid wire

Shielding gas:

Approvals: Oxy-acetylene

Bronze N is our high strength Nickel-bronze brazing rod for joining and surfacing steel, malleable cast iron, nickel and nickel alloys. Typical applications include joints subject to severe mechanical loads, soldering butt joints on heavily stressed components, sleeveless pipe assemblies in the car industry.

Base materials to be welded:

- Similar and dissimilar joining
- To be used in combination with HILCO Bronze Flux.

Applications:

- Shipyards/offshore
- Construction works
- Repair shops
- Car industry/assembling
- Bicycle industry

Equivalent product in alternative welding process:

ſ	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding /
ļ						brazing
ı	-	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

ĺ	С	Mn	Si	S	Р	Ni	Sn	Fe	Cu	Ti	Zn	Al
		0,20	0,25			10,0	0,20		48,0		Bal.	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 690	≥ 18	890-920°C

Dia. mm.	Length mm.	Weight / package kg.		
1,5	500	5		
2,0	500 / 1000	5		
2,5	500 / 1000	5		
3,0	500 / 1000	5		

Phosphorbronze 93-7

Gas welding rods - repair & maintenance - brazing

AWS A5.8: ~BCuP-2

EN 1044: CP 202 Werkstoffnr. 2.1463

Wire type: OAW Solid wire Welding positions:

→

Approvals:

Shielding gas: Oxy-acetylene

Phosphorbronze 93/7 is our thin flowing Copper-Phosphorous alloy used for brazing copper-to-copper. The alloy has good bridging capacities and requires a lesser good fit up than Phosphorbronze 92/8. The rod is self fluxing, no need for separate flux, when joining copper to copper.

Base materials to be welded:

- Joining copper to copper
- Joining copper to brass (Silver solder flux required)

Applications:

- Pressure vessel & boiler industry
- Construction works
- Repair shops
- · Refrigerator industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding /
					brazing
-	-	-	-	-	L-Ag 2P

Chemical composition, wt.% weld metal - typical:

_	The mount of the control of the cont											
I	С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
ſ					6,8				93,2			

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 250	5	710-820°C

Dia. mm.	Length mm.	Weight / package kg.
2,0	500	5
2,5	500	5

EN 760: S A AR 1 87 AC

AWS A5.17: F7A0-EL12 / F7A0-EM12 / F7A0-EM12K / F7A0-EC1 EN 756: S 4T A AR S1 / S 4T 0 AR S2 / S 4T 0 AR S2Si / S 42 0 AR S0

Flux type:

Agglomerated rutile, Mn/Si alloying

Welding positions:

Approvals in combination with wire:

H 60: BV, CL, DNV, LR

HW 430 is our agglomerated rutile flux for submerged arc welding unalloyed and low alloyed structural steels in combination with solid wires H60, H100, H100Si and metalcored wire Hilcord 100. HW 430 is suitable for single and multipass welding, for fillet welds and multi wire applications. The weld has an excellent appearance and the slag is self-releasing. Flux/wire usage ratio 1:1, the basicity index is 0,4 ca. (Boniszewski).

Base materials to be welded:

- Ships plate A-D, A(H)32-D(H)36, S315G1S-S355G3S
- Structural steel S185-S355J2, St.33-St.52, C(K)10-C(K)35
- Boiler steel P235GH-P295GH, HI, HII, 17Mn4
- Fine grain steel P275N-P355N, S275N-S355M, StE285-StE 355, StE285-StE355TM
- Pipe steel P235T1-P355N, L210-L360NB, St37.0-St52, St45.8, X42-X52, StE210.7-StE360.7TM
- Cast steel GP240R, GS45

Applications:

- Shipyards/offshore
- · Construction works
- Bridge & road constructions
- · Pressure vessel & boiler industry

Chemical composition, wt.% weld metal - typical:

	The state of the s											
Type of wire	С	Si	Mn	Ni	Мо	Cr	P	S				
H 60	0,04	0,80	1,20									
H 100	0,04	0,80	1,40									
H 100 Si	0,04	1,10	1,50									
Hilcord 100	0.08	1 40	1 70									

Mechanical properties, weld metal - typical:

Condition		0,2% Yield strength	Tensile strength	Elongation	Impact Values ISO-V J			
A = as welded		MPa	MPa	Lo=5d - %	+20°C	0°C	-20°C	-40°C
H 60	Α	<u>></u> 400	<u>≥</u> 500	<u>></u> 25		<u>></u> 50		
H 100	Α	<u>></u> 400	<u>></u> 520	<u>></u> 25		<u>></u> 40	<u>></u> 27	
H 100 Si	Α	<u>></u> 400	<u>></u> 520	<u>></u> 25		<u>></u> 40	<u>></u> 27	
Hilcord 100	Α	≥ 440	≥ 560	≥ 28		≥ 40	≥ 27	

type	Weight / kg.
bag	25 kilo

EN 760: S A AB 2 78 9Cr AC

Flux type: Agglomerated (semi) basic

Approvals in combination with wire:

HW 100 is our agglomerated semi-basic flux for submerged arc welding and surfacing stainless steel grades. HW 100 is suitable for single and multipass welding, for fillet welds and multiwire applications. The weld has an excellent appearance and the slag is self-releasing, even when hot. The weld metal, produced in combination with corresponding wires, offers good corrosion resistance in its typical applications. The basicity index is 1,2 ca. (Boniszewski).

Base materials to be welded:

 Armour plate, hardenable steels, non-magnetic austenitic steels, heat resisting ferritic chromium steels

Applications:

- Repair shops
- Railways

Chemical composition, wt.% weld metal – typical:

Type of wire	С	Si	Mn	Ni	Мо	Cr	Nb
Hilchrome S307	0,10	1,00	7,00	9,0		19,0	

Mechanical properties, weld metal - typical:

Condition A = as welded	0,2% Yield strength	Tensile strength	Elongation	Hardness
	MPa	MPa	Lo=5d - %	HB
Hilchrome S307 A	≥ 320	<u>></u> 570	<u>></u> 36	150 after deformation 40-45HRc

Spooltype	Weight / kg.
bag	25

EN 760: S A AR 3 CrMo AC

AWS A5.17: F6AZ-EL12

EN 756: S 35 Z AR S1

Flux type: Agglomerated rutile, Cr/Mo alloying Welding Current:

Welding positions:

Approvals in combination with wire:

HW 400 is our agglomerated rutile flux for surfacing parts subject to wear using the submerged arc welding process. HW 450 is specifically developed for reconditioning bulldozer tracks and similar applications.

Base materials to be welded:

Applications:

Repair shops

Chemical composition, wt.% weld metal - typical:

One inical composition, with well metal - typical.								
Type of wire	С	Si	Mn	Ni	Мо	Cr	P	S
H 60 (3 rd layer)	0,25	0,70	2,00		0,5	3,0		

Mechanical properties, weld metal - typical:

meenamear properties, well metar – typical.									
Condition A= as welded		0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness				
H 6	60 A	> 360	> 450	> 22	400 HB				

- acting the second second						
type	Weight / kg.					
bag	25 kilo					

Aluminium

Welding of Aluminium

Aluminium is successfully welded only after careful thought and preparation. Through correct preparation, it is easier to avoid the pitfalls that can trap the unwary. Therefore this introduction with facts on base metals, welding methods, types of joint and filler metals. This introduction is just a general guideline, please contact us for more information.

Base metals

Aluminium and its alloys can be divided into three major groups:

- Aluminium
- Non hardenable / non heat treatable alloys
- Hardenable / heat treatable alloys

Aluminium is developed in various grades of purity. The most common commercial grades contain 99,7-99,5 or 99,0% aluminium. Non-hardenable alloys, i.e. not suitable for heat treatment, contain small amounts of Mn or Mg. AlMn alloys are often made up of between 1,0-1,2%Mn, while AlMg alloys with up to 5% are quite common. AlMgMn alloys are also used. The hardenable alloys contain copper (Cu), magnesium and silicon (Mg+Si), or zinc and magnesium (Zn+Mg).

Aluminium and most of the non-heat treatable and heat treatable alloys possess good weldability. In the case of hardenable alloys with copper and lead additives, there is a risk of hot cracking and therefore they are difficult-to-weld. Many casting alloys are also suitable for welding except in the case of those, which have high content of copper or magnesium which cannot be welded.

Welding methods

Aluminium can be welded easily. Consideration must be given to both the welding method, the type of joint and the filler metal. The two dominating welding processes are GMAW (MIG) and GTAW (TIG) welding, but also gas, plasma an resistance welding are used as well as welding with stick electrodes (SMAW).

Determining the welding process depends on numerous factors. TIG welding is better for thin light-gauge materials, when there is a need for good surface finish and for single sided welding (such as when welding pipes) as well as repair welding. TIG welding is generally done on AC current.

MIG welding is used primarily in case of thicker or heavy-gauge materials and when high speed is a priority in combination with long continuous welds. Due to the lower heat input, MIG welding results in less distortion in the welding zone. Pulse-arc welding with MIG is an interesting technology.

Stick electrodes are used mainly for repair jobs. The advantage of this process is the simple controllability as well as the possibility to be flexible in any environment. Low investment costs can be a factor for choosing SMAW.

Types of joint

The joint-type depends on the thickness of the base materials and the type and shape of the workpiece. As a rule no preparation is required for thinner materials. An ordinary I-joint is recommended for single sided TIG welding plates \leq 4mm. plate thickness, a 50 $^{\circ}$ V-joint with a 2 to 3 mm. bevelled edge is recommended for two sided welding plates > 4 mm. thickness. Alternatively a 90 $^{\circ}$ double V-joint can be applied.

Good joint preparation makes welding easier, saves shielding gas and filler metals and contributes to the quality of the weld.

A special characteristic of aluminium is the higher melting point of oxide that forms on its surface. To avoid welding defects the joint surface must be scrapped or brushed using stainless steel wire brushes.

Bear in mind that welding causes greater deformation in aluminium than it does in steel. It is therefore essential to give good consideration to all aspects of the welding process.

Filler metals

The choice which filler metal to use, is based on the composition of the base materials and the requirements of the finished product. Generally speaking, aluminium and non-heat treatable alloys should be welded with matching filler metals. Alloys, which are suitable for hardening, should be welded with a filler metal with a high content of Si or Mg in order to avoid the risk of hot cracking.

If there is a need of good match in colour between the welded joint and the base materials after anodic treatment, a suitable filler metal should be used.

As in the case of base materials, care must be taken to keep the filler metals clean, free from any contamination (especially oil, grease or dust). Keep your filler metals in warm and dry conditions. For storing stick electrodes take extra precautions and store the electrodes in their original hermetically sealed aluminium cans.

Welding application	Special considerations	Common base materials	Filler metal selection						
Shipbuilding and sub su	ppliers								
Requirements:									
Saltwater corrosion resistance, pressure vessel service, thick plate welding									
Structural frames	Strength & fatigue,	6061 to 6061	AL Mg5						
Structural frames	corrosion, extrusions & cut plate	6061 to 5086	AL Mg5						
	correction, extractions a car plate	5086 to 5086	AL Mg5						
		5083 to 5083	AL Mg4,5Mn						
Skin	Strength & corrosion	5052 to 5052	AL Mg5, AL Si5 (2 nd choice)						
		5086 to 5086	AL Mg5						
		6061 to 6061	AL Mg5						
		5083 to 5083	AL Mg4,5Mn						
Desalination units	Corrosion & high temperatures	5454 to 5454	AL Mg3						
T 1 "	0, ,, ,	5052 to 5052	AL Mg3						
Tube railings	Strength & anodize	6061 to 6061 6063 to 6063	ÁL Mg5 AL Mg5						
Structural plate & LNG	Impact strength & cold temperature	5083 to 5083	AL Mg4,5Mn						
tanks	properties		<i>G</i> ,						
Marine cast hardware	Strength & corrosion	5180 to 5180	AL Mg5						
Cars, manufacturing and		5350 to 5350	AL Mg5						
and frame joining	gh torque drive components, body Pressure seal corrosion	3003 to 3003	Al Si12 Al Si5 (2 nd choice)						
Heat exchangers	Pressure seal, corrosion	3003 to 3003	AL Si12, AL Si5 (2 nd choice)						
	resistance & thin wall burst	3003 to 6061	AL Si12, AL Si5 (2 nd choice) AL Si12, AL Si5 (2 nd choice)						
Wheels	Shear strength, fatigue and high	6061 to 6061 5454 to 5454	AL SITZ, AL SIS (Z. CHOICE) AL Mg3						
villeeis	temperature	5454 to 6061	AL Mg3						
	temperature	5356 to 5454	AL Mg3						
Drive shafts	Torque / shear strength & fatigue	6061 to 6061	AL Mg5						
Bumpers & supports	Impact strength, corrosion	7005 to 7005	AL Mg5						
	resistance & extrusions	7029 to 7029	_						
Body panels	Tensile strength, corrosion	6009 to 6009	AL Si5, ALSi 12 (2 nd choice) AL Si5, ALSi 12 (2 nd choice)						
	resistance & thin wall welding	6011 to 6011							
Frame sections	Strength & fatigue	6061 to 6061	AL Si5						
Trucks, buses and traile	<u>rs</u>								
Requirements:	welding technology, product cost								
optimation, product relia									
Formed truck panels	Formability & corrosion resistance	5052 to 5052	AL Mg5						
. Simou a don pariois	. Simusing a sorrosion resistance	5052 to 5052 5052 to 5454	AL Mg5						
		5454 to 5454	AL Mg5						
Engine blocks cast housings	Weld cracking	356 to 356	AL Si12						
Cylinder heads	Weld cracking	A201.0 to A201.0	AL Si12						
, 		240.0 to 240.0	AL Si12						
		242.0 to 242.0	AL Si12						
Forged pistons	Weld cracking	2218 to 2218	AL Si5						
i	1	2618 to 2618	AL Si5						

Welding application	Special considerations	Common base materials	Filler metal selection						
Trucks, buses and trailers									
Requirements:	- dia 4 4 4								
High quality production welding technology, product cost optimation, product reliability engineering									
Truck panels	Strength, cost efficiency & fatique	5454 to 5454	AL Mg5, AL Mg3 (2 nd choice)						
	3. ,	5086 to 5086	AL Mg5						
		5083 to 5083	AL Mg5,						
			AL Mg4,5Mn (2 nd choice)						
Chemical tankers	Strength & corrosion resistance	5254 to 5254	AL Mg4,5Mn						
Line heaters & steam liners		5454 to 5454	AL Mg3						
Trim	Formability, anodise & polish	5050 to 5050	AL Mg5						
-		5005 to 5005	AL Mg5						
Trains, railway cars									
Requirements:	elding technology, product cost								
optimation, product reliable									
Train panels	Strength & fatigue	5454 to 5454	AL Mg5, AL Mg3 (2 nd choice)						
	cost efficiency	5086 to 5086	AL Mg5						
	,	5083 to 5083	AL Mg4,5Mn						
Aerospace & defence indu	stry		•						
Requirements:									
	ice, maximum strength-to-weld rati								
	s, armour plate technology, comple	X							
joint designs	Character to contact and a	COC4 +- COC4	AL Si5						
Aerospace hardware	Strength-to-weight ratio	6061 to 6061 6013 to 6013	AL SIS						
		If anodised	AL Mg5						
		PWHT	AL Si5						
Turbine blades and torque	Strength-to-weight ratio	711.0 to 711.0	AL Mg5						
converters									
Armour plate	Impact strength & strength-to-	5083 to 5083	AL Mg5						
	weight ratio	7039 to 7039	AL Mg5						
Military bridges	Strength-to-weight ratio	7039 to 7039	AL Mg5						
		PWHT							
Other transport equipment									
Requirements:	with to succeed waters black of an artist								
thin wall joining, complex	gth-to-weight ratios, high strength								
Bicycle frames & sport	Strength fatigue & anodise	6061 to 6061	AL Mg5						
wheels	and an angula a another	6061 to 6061	AL Si5						
		PWHT							
		7005 to 7005	AL Mg5,						
			AL Mg4,5Mn (2 nd choice)						
		7046 to 7046	AL Mg5,						
			AL Mg4,5Mn (2 nd choice)						
L		5086 to 5086	AL Mg5						
Tops & sleds	Deep drawing & forming	1100 to 1100	AL 99,5						
Eromo ovtruoiono 9 hachi	Strength-to-weight ratio & forming	1100 to 1100 6061 to 6061	AL Si5						
Frame extrusions & body sheet	Sirengin-to-weight ratio & forming	5454 to 5454	AL Mg5 AL Mg5						
SHEEL		5086 to 5086	AL Mg5						
		5052 to 5052	AL Mg5 AL Mg5						
		0002 10 0002	/ IL IVIGO						

Welding application	Special considerations	Common base materials	Filler metal selection						
Energy generation incl. boilers and pressure vessels. Turbines. power plants, windmills									
Requirements:									
Defect free production wel	ding technology, special alloys for	specific							
environments									
Pressure vessel	Strength	5456 to 5456	AL Mg4,5Mn						
			AL Mg4,5MnZr (on request)						
			AL Mg5Mn (on request)						
Marine & cryogenic tanks	Temperature & strength	5083 to 5083	AL Mg4,5Mn						
Chemical tanks	Chemical (acids), processing	1060 to 1060	AL Si5						
	(food), H ₂ O ₂ , corrosion & strength	1100 to 1100	AL Si5						
		3003 to 3003	AL Si5						
		5254 to 5254	AL Mg3						
General repair & maintenar	<u>nce</u>								
Requirements:									
In field repair of cast alumi	nium objects, in workshop repair of	F							
aluminium objects, anodis	ed aluminium parts								
General repairs of	Pure/cast Al anodised,	N/A	AL 99,5						
aluminium products e.g.	Mn & Mg Al alloys,	N/A	Aluminil 99,5						
cylinders heads, machine	AlMgSi alloys,	6060 / 6083	AL Mg3						
bases, small engine crank	unalloyed aluminium	N/A	Aluminil Mn1						
cases, marine etc.	cast silicon aluminium alloys	N/A	Aluminil Si12						
	general grades	all	Aluminil Si5						

Aluminium base n	Aluminium base materials, the alloy designation, their application						
International	Alloy	Typical applications					
registration							
1050A,	Al99,5	Body panels for tanks used for chemical and food industry, dairy industry,					
1200	Al99,0	breweries, packaging industry, household appliances, electronic industry					
3103	AlMn1	Buildings, heat exchangers, roof coverings					
5052,	AlMg2,5	Tanks, body panels and construction in contact with seawater and -air					
5251	AlMg2Mn0,3						
5083	AlMg4,5Mn	Shipbuilding, tanks and tubes for transportation liquid gases, armour plate					
5086	AlMg4Mn	Shipbuilding and car bodies					
5454	AlMg2,7Mn	Shipbuilding, car bodies, transportation industry					
6005A	AlMgSi0,7	General construction grade, roof constructions, light poles, pipelines					
6060,	AlMgSi0,5	Building materials, windows, doors					
6063	_	-					
6061	AlMg1SiCu	General construction grade for dynamic stressed constructions, bridges					
6082	AlMgSi1	Car body industry					
7020	AlZn4,5Mg1	Non-marine applications, cars, armour plate					

Filler m	Filler metals for welding Aluminium										
No.	HILCO	AWS	DIN	Werkstoffnr.	Available as						
		Spec.			SMAW	GMAW	GTAW	OAW			
1	AL 99,5	ER 1100	SG-AI 99,5	3.0259	•	•	•	•			
2	AL Si5	ER 4043	SG-AlSi 5	3.2245	•	•	•	•			
3	AL Si12	ER 4047	SG-AISi 12	3.2585	•	•	•	•			
4	AL Mg3	ER 5754	SG-AIMg 3	3.3536	(•)	•	•				
5	AL Mg4,5Mn	ER 5183	SG-AIMg 4,5 Mn	3.3548		•	•				
6	AL Mg5	ER 5356	SG-AIMg 5	3.3556		•	•				

Consumable	selector									
Base materials	7020	6005A, 6060, 6061, 6063, 6082	5083	5086	5454	5052, 5251	1050, 1200, 3103			
1050, 1200, 3103	2	6, 2	6	6	5, 2	5, 2	1			
5052, 5251	5	5, 2	6	6	6	6				
5454	5	6	6	6	6					
5086	5	6	6	6		•				
5083	5	6	5		•					
6005A, 6060, 6061, 6063, 6082	5, 2	6		Notes: for welding alloy 7020 it is possible to use filler metal no. 6 instead of no. 5.						
7020	5		-	For workpieces subject to anodic treatment we recommend filler metal no. 6.						

Aluminil 99,8

AWS A5.3: E 1100 DIN 1732: EL-Al 99,8 Werkstoffnr, 3,0286

Coating type:
Special

Arc voltage: 65V

Approvals:

Current:

Welding positions:

Frinting:

Aluminil 99,8 is our special coated aluminium electrode for welding pure aluminium and wrought aluminium alloys. Deposit weld metal has good mechanical properties and high corrosion resistance. Typical applications include repair welding engine blocks, oil-castings, automotive parts and aluminium pump housings. Aluminil 99,8 has a pure white coating specifically designed to reduce moisture pick-up. For thicker plate materials (≥ 15 mm.) it is recommended to preheat at 150°C to 250°C before welding.

Base materials to be welded:

- Pure aluminium acc. to DIN 1712 Al 99,8 and Al 99
- Pure aluminium Werkstoff nr. 3.0285 and 3.0205
- Similar aluminium and wrought aluminium alloys

Applications:

- Construction works (aluminium base metals)
- · Repair shops

Equivalent product in alternative welding process:

Equivalent produc	ot iii aitoiiiativo wo	ianig process.			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	AL 99,5	-	AL 99,5	-	Fluxcored AL 99,5

Chemical composition, wt. % weld metal - typical:

ſ	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
		0,02	0,08						0,02			99,8

Note: Zn 0,03 - others 0,05 max.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 30	≥ 80	≥ 30	-

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	9,2	60-90
3,2	350	14,0	80-110
4,0	350	20,4	110-150

Aluminil Si5

Stick electrodes - aluminium

AWS A5.3: E 4043 DIN 1732: EL-Al Si 5 Werkstoffnr. 3.2245

Coating type:

Special

Arc voltage: 65V

Approvals:

Current:

=+

Tip colour:

Welding positions:

Printing:

Aluminil Si 5 is our special coated aluminium electrode for welding, repairing and surfacing forged and cast aluminium-silicon alloys and joining dissimilar aluminium alloys with max. 7%Si content. The easy flowing characteristics make the electrode suitable for welding all aluminium castings (except AIMg castings). The electrode has a pure white coating specifically designed to reduce moisture pick-up. For thicker plate materials (≥15 mm.) it is recommended to preheat at 150°C to 250°C before welding.

Base materials to be welded:

- · Aluminium-MgSi alloys
- Aluminium-Mg alloys up to 2,5% Mg
- Aluminium-MnCu alloys
- · Aluminium-Si cast alloys
- Joining dissimilar aluminium alloys

Applications

- · Construction works (aluminium base metals)
- Shipyards/offshore
- Repair shops

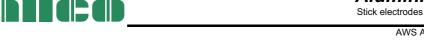
Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	AL Si 5	-	AL Si 5	-	Fluxcored AL Si5

Chemical composition, wt. % weld metal - typical:

Charles Composition, the 70 trains to the Composition of the Compositi												
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	٧	Al
		0,05	5,0						0,05			Bal.

Note: Zn 0.10 - Fe 0.20


Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 90	≥ 160	≥ 15	40-55 HB

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	9,0	60-90
3,2	350	13,2	80-110
4,0	350	20,4	110-150

Aluminil Si12

AWS A5.3: E 4047 DIN 1732: EL-Al Si 12 Werkstoffnr, 3,2585

Coating type:

Special

Arc voltage: 65V

Approvals:

Current:

Tip colour:

Welding positions:

Printing:

Aluminil Si 12 is our special coated electrode developed for welding all types of aluminium castings and applications where good colour matching with base materials is important. Typical applications include repair welding, surfacing and construction welding: window frames, aluminium tubes, furniture, aluminium castings, engine blocks, automotive parts. The electrode has a pure white coating specifically designed to reduce moisture pick-up. For thicker plate materials (≥15 mm.) it is recommended to preheat at 150°C to 250°C before welding.

Base materials to be welded:

Aluminium-Si cast alloys up to 12% Si content: G-AlSi 12 (Cu), G-AlSi 10 Mg (Cu), G-AlSi 6 Cu 4

Applications:

- Construction works (aluminium base metals)
- Repair shops

Equivalent product in alternative welding process:

=qairaioni productin anomanto molanig processi									
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing				
-	AL Si 12	-	AL Si 12	-	AL Si 12				

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р.	Cr	Ni	Мо	Cu	Nb	V	Al
	0,10	12,0		-				0,05			Bal.

Note: Zn 0,10 - Fe 0,40

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	5 5	
As welded	≥ 80	≥ 180	≥ 5	50 HB

r donaging a	ia wolaling aut	u.	
Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	8,8	60-90
3,2	350	13,2	80-110
4,0	350	19,6	110-150

Aluminil Mn

Stick electrodes - aluminium

AWS A5.3: E 3003 DIN 1732: EL-Al Mn 1 Werkstoffnr, 3.0516

Coating type:

Special

Arc voltage: 65V

Approvals:

Current:

=+

Tip colour:

Welding positions:

Printing:

Aluminil Mn is our special coated aluminium electrode for welding forged and cast aluminium-manganese and aluminium-mangnesium alloys. Deposit weld metal has good mechanical properties and high corrosion resistance. Typical applications include repair and construction welding. Aluminil Mn has a pure white coating specifically designed to reduce moisture pick-up. For thicker plate materials (≥ 15 mm.) it is recommended to preheat at 150°C to 250°C before welding.

Base materials to be welded:

- Aluminium-manganese alloys
- Aluminium-magnesium alloys
- · Aluminium-magnesium castings

Applications:

- Shipyards/offshore
- · Repair shops

Equivalent product in alternative welding process:

Equivalent produc	ot iii aitoi iiativo wo	ianig process.			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
	AL Mg 3	-	AL Mg 3	-	_

Chemical composition, wt. % weld metal - typical:

I	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	V	Al
		1,20	0,30						0,02			Bal.

Note: Zn 0,09 - Fe 0,60

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 40	≥ 110	≥ 20	-

Dia. mm.	Length mm.	Weight (kgs) Currer 1000 pcs. A			
2,5	350	9,0	60-90		
3,2	350	13,7	80-110		
4,0	350	20,4	110-150		

AWS A5.10: ER 1100 DIN 1732: MSG-AI 99.5

Werkstoffnr, 3,0259

Wire type:

MIG Solid wire

Current:

Welding positions:

Approvals:

Shielding gas: 11-I3 = Ar-ArHe

AL 99,5 is our aluminium wire for MIG welding pure aluminium and wrought aluminium alloys. Deposit weld metal has good mechanical properties and high corrosion resistance. Typical applications include repair welding engine blocks, oil-castings, automotive parts and aluminium pump housings.

Base materials to be welded:

- Pure aluminium acc. to DIN 1712 Al 99,8 and Al 99
- Pure aluminium Werkstoffnr, 3.0285 and 3.0205
- · Similar aluminium and wrought aluminium alloys

Applications:

- Construction works (aluminium base metals)
- · Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Aluminil 99,8	-	-	AL 99,5	-	Fluxcored AL 99,5

Chemical composition, wt.% weld metal - typical:

The state of the s											
၁	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
		0,10						0,05	0,05	0,07	> 99,50

Mechanical properties, weld metal - typical:

moonamou. proportio	neonamear properties, were metal typical.									
Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical _I	properties					
As welded	≥ 20	≥ 65	≥ 35	Melting range 647-658°C	Density ~2700 kg/m ³					

Note: electrical conductivity 33 Sm/mm²

	<u> </u>									
Dia. mm.	Spooltype	Weight / spool kg.								
		opeeg.								
0,8	S300	5								
1,0	S300	6								
1,2	S300	6								

AWS A5.10: ER 4043 DIN 1732: MSG-AlSi 5 Werkstoffnr, 3.2245

Wire type: MIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11-13 = Ar-ArHe

AL Si 5 is our aluminium wire for MIG welding, repairing and surfacing forged and cast aluminium-silicon alloys and joining dissimilar aluminium alloys with max. 7%Si content. The easy flowing characteristics make the wire suitable for welding all aluminium castings (except AIMg castings).

Base materials to be welded:

- Aluminium-MgSi alloys
- Aluminium-Mg alloys up to 2,5% Mg
- Aluminium-MnCu alloys
- · Aluminium-Si cast alloys
- Joining dissimilar aluminium alloys

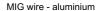
Applications:

- Construction works (aluminium base metals)
- Shipyards/offshore
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing				
Aluminil Si 5	-	-	AL Si 5	-	Fluxcored AL Si5				

Chemical composition, wt.% weld metal - typical:


One micar composition, wt. 70 well metal – typical.											
C	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,30	5,0									Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical properties		
As welded	≥ 70	≥ 130	≥ 16	Melting range 573-625°C	Density ~2680 kg/m ³	

Note: electrical conductivity 15-19 Sm/mm²

Dia.	Spooltype	Weight /		
mm.		spool kg.		
0,8	S100 / S300	0,5 / 5		
1,0	S100 / S300	0,5 / 6		
1,2	S300	6		
1,6	S300	6		

AWS A5.10: ER 4047 DIN 1732: MSG-AISi 12

Werkstoffnr. 3.2585

Wire type: MIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11-13 = Ar-ArHe

AL Si 12 is our aluminium wire for MIG welding all types of aluminium castings and applications where good colour matching with base materials is important. Typical applications include repair welding, surfacing and construction welding: window frames, aluminium tubes, furniture, aluminium castings, engine blocks, automotive parts.

Base materials to be welded:

Aluminium-Si cast alloys up to 12% Si content:
 G-AlSi 12 (Cu), G-AlSi 10 Mg (Cu), G-AlSi 6 Cu 4

Applications:

- Construction works (aluminium base metals)
- Repair shops

Equivalent product in alternative welding process:

Edutation product in attendance welding process.										
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing					
Aluminil Si 12	-	-	AL Si 12	-	AL Si 12					

Chemical composition, wt.% weld metal – typical:

С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,30	12,0									Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical properties		
As welded	≥ 80	≥ 170	≥ 5	Melting range 573-585°C	Density ~2650 kg/m ³	

Note: electrical conductivity 18-22 Sm/mm²

Dia. mm.	Spooltype	Weight / spool kg.
0,8	S300	5
1,0	S300	6
1,2	S300	6

AWS A5.10: ER 5754 DIN 1732: MSG-AIMg 3 Werkstoffnr. 3.3536

Wire type: MIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11-13, Ar-ArHe

AL Mg 3 is our aluminium wire for MIG welding forged and cast aluminium-manganese and aluminium-magnesium alloys. Deposit weld metal has good mechanical properties and high corrosion resistance. Typical applications include repair and construction welding.

Base materials to be welded:

- · Aluminium-manganese alloys
- Aluminium-magnesium alloys
- · Aluminium-magnesium castings

Applications:

- · Shipyards/offshore
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Aluminil Mn	-	-	AL Mg 3	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,30				< 0,30	3,0			< 0,15		Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical properties		
As welded	≥ 80	≥ 180	≥ 18	Melting range 580-642°C	Density ~2660 kg/m ³	

Note: electrical conductivity 16-22 Sm/mm²

Dia. mm.	Spooltype	Weight / spool kg.
0,8	S300	5
1,0	S300	6
1,2	S300	6

MIG wire - aluminium

AWS A5.10: ER 5183

DIN 1732: MSG-AIMg 4,5 Mn Werkstoffnr, 3,3548

Wire type:

MIG Solid wire

Current:

Welding positions:

Approvals: ABS, LR

Shielding gas: 11-I3 = Ar-ArHe

AL Mg 4,5 Mn is our aluminium wire for MIG welding forged and cast aluminium-manganese and aluminiummagnesium alloys in applications where high tensile strengths and/or excellent resistance to sea water is required. Typical applications include shipbuilding, tankbuilding and general construction welding.

Base materials to be welded:

- Aluminium-manganese alloys
- Aluminium-magnesium alloys
- Aluminium-MgSi alloys
- Similar aluminium alloys

Applications:

- Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
~Aluminil Mn	-	-	AL Mg 4,5 Mn	-	-

Chemical composition wt % weld metal - typical:

Official composition, we were metal - typical.											
С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,80				0,15	4,7			< 0,15		Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical	properties
As welded	≥ 125	≥ 275	≥ 17	Melting range Density 568-638°C ~2400 kg/mm	

Note: electrical conductivity 15-19 Sm/mm²

· workingg was				
Dia.	Spooltype	Weight /		
mm.		spool kg.		
0,8	S300	5		
1,0	S300	6		
1,2	S300	6		

AWS A5.10: ER 5356 DIN 1732: MSG-AIMg 5 Werkstoffnr. 3.3556

Wire type: MIG Solid wire Current:

Welding positions:

Approvals: ABS, DNV, LR

Shielding gas: 11-13 = Ar-ArHe

AL Mg 5 is our aluminium wire for MIG welding forged and cast aluminium-manganese and aluminium-magnesium alloys with a maximum of 5% Mg content. Typical applications include shipbuilding, tankbuilding railway and car industry.

Base materials to be welded:

- · Aluminium-manganese alloys
- · Aluminium-magnesium alloys
- Aluminium-MgSi alloys
- · Similar aluminium alloys

Applications:

- · Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Car industry/assembling
- Railways
- Bicycle industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
~Aluminil Mn	-	-	AL Mg 5	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,40				0,15	5,0			< 0,15		Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical properties		
As welded	≥ 110	≥ 240	≥ 17	Melting range Density 562-633°C ~2640 kg/n		

Note: electrical conductivity 14-19 Sm/mm²

Dia. mm.	Spooltype	Weight / spool kg.		
0,8	S100 / S300	0,5 / 5		
1,0	S300	6		
1,2	S100 / S300	0,5 / 6		

AWS A5.10: ER 1100 DIN 1732: WSG-AI 99.5

Werkstoffnr, 3,0259

Wire type:

Approvals:

TIG Solid wire

Current:

~

Shielding gas:

I1 = Pure Ar

AL 99,5 is our aluminium wire for TIG welding pure aluminium and wrought aluminium alloys. Deposit weld metal has good mechanical properties and high corrosion resistance. Typical applications include repair welding engine blocks, oil-castings, automotive parts and aluminium pump housings. To be used in combination with tungsten electrodes type W.

Base materials to be welded:

- Pure aluminium acc. to DIN 1712 Al 99,8 and Al 99
- Pure aluminium Werkstoff nr. 3.0285 and 3.0205
- · Similar aluminium and wrought aluminium alloys

Applications:

· Construction works (aluminium base metals)

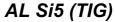
Welding positions:

· Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Aluminil 99,8	AL 99,5	-	-	-	Fluxcored AL 99,5

Chemical composition, wt.% weld metal - typical:


The state of the s											
၁	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
		0,10						0,05	0,05	0,07	> 99,50

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical p	properties
As welded	≥ 20	≥ 65	≥ 35	Melting range 647-658°C	Density ~2700 kg/m ³

Note: electrical conductivity 33 Sm/mm²

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,2	1000	5
4,0	1000	5

AWS A5.10: ER 4043 DIN 1732: WSG-AISi 5 Werkstoffnr. 3.2245

Wire type:

TIG Solid wire

Current:

~

\----- |

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

AL Si 5 is our aluminium wire for TIG welding, repairing and surfacing forged and cast aluminium-silicon alloys and joining dissimilar aluminium alloys with max. 7%Si content. The easy flowing characteristics make the wire suitable for welding all aluminium castings (except AIMg castings). To be used in combination with tungsten electrodes type W.

Base materials to be welded:

- Aluminium-MgSi alloys
- Aluminium-Mg alloys up to 2,5% Mg
- Aluminium-MnCu alloys
- Aluminium-Si cast alloys
- · Joining dissimilar aluminium alloys

Applications:

- Construction works (aluminium base metals)
- Shipyards/offshore
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Aluminil Si 5	AL Si 5	-	-	-	Fluxcored AL Si5

Chemical composition, wt.% weld metal - typical:

I	С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
I		0,30	5,0									Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical properties	
As welded	≥ 70	≥ 130	≥ 16	Melting range 573-625°C	Density ~2680 kg/m ³

Note: electrical conductivity 15-19 Sm/mm²

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,2	1000	5
4,0	1000	5
5,0	1000	5

AWS A5.10: ER 4047 DIN 1732: WSG-AISi 12 Werkstoffnr. 3.2585

Wire type:

TIG Solid wire

Current:

~

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

AL Si 12 is our aluminium wire for TIG welding all types of aluminium castings and applications where good colour matching with base materials is important. Typical applications include repair welding, surfacing and construction welding: window frames, aluminium tubes, furniture, aluminium castings, engine blocks, automotive parts. To be used in combination with tungsten electrodes type W.

Base materials to be welded:

Aluminium-Si cast alloys up to 12% Si content:
 G-AlSi 12 (Cu), G-AlSi 10 Mg (Cu), G-AlSi 6 Cu 4

Applications:

- Construction works (aluminium base metals)
- · Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Aluminil Si 12	AL Si 12	-	-	-	AL Si 12

Chemical composition, wt.% weld metal - typical:

••		,	, o 11 o 1 a 1 1 1	- 13 P							
С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,30	12,0									Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical p	properties
As welded	≥ 80	≥ 170	≥ 5	Melting range 573-585°C	Density ~2650 kg/m ³

Note: electrical conductivity 18-22 Sm/mm²

Dia.	Length	Weight /		
mm.	mm.	package kg.		
1,6	1000	5		
2,0	1000	5		
2,4	1000	5		
3,2	1000	5		
4,0	1000	5		

AWS A5.10: ER 5754 DIN 1732: WSG-AlMg 3 Werkstoffnr. 3.3536

Wire type:

TIG Solid wire

Current:

~

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

AL Mg 3 is our aluminium wire for TIG welding forged and cast aluminium-manganese and aluminium-mangesium alloys. Deposit weld metal has good mechanical properties and high corrosion resistance. Typical applications include repair and construction welding. To be used in combination with tungsten electrodes type W.

Base materials to be welded:

- Aluminium-manganese alloys: Al Mn 1
- Aluminium-magnesium alloys: Al Mg1, Al Mg3
- Aluminium-magnesium castings: G-Al Mg3

Applications:

- Shipyards/offshore
- · Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Aluminil Mn	AL Mg 3	-	-	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,30				< 0,30	3,0			< 0,15		Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength Mpa	Tensile strength MPa	Elongation Lo=5d - %	Physical p	roperties
As welded	≥ 80	≥ 180	≥ 18	Melting range 580-642°C	Density ~2660 kg/m ³

Note: electrical conductivity 16-22 Sm/mm²

Dia. mm.	Length mm.	Weight / package kg.		
1,6	1000	5		
2,0	1000	5		
2,4	1000	5		
3,2	1000	5		
4,0	1000	5		

TIG rods - aluminium

AWS A5.10: ER 5183 DIN 1732: WSG-AIMg 4,5 Mn

Werkstoffnr. 3.3548

Wire type:

TIG Solid wire

Current:

~

Welding positions:

Approvals: ABS, LR

Shielding gas: 11 = Pure Ar

AL Mg 4,5 Mn is our aluminium wire for TIG welding forged and cast aluminium-manganese and aluminium-magnesium alloys in applications where high tensile strengths and/or excellent resistance to seawater is required. Typical applications include shipbuilding, tankbuilding and general construction welding. To be used in combination with tungsten electrodes type W.

Base materials to be welded:

- · Aluminium-manganese alloys
- · Aluminium-magnesium alloys
- Aluminium-MgSi alloys
- · Similar aluminium alloys

Applications:

- Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / Brazing
~Aluminil Mn		-	AL Mg 4,5 Mn	-	-

Chemical composition, wt.% weld metal - typical:

•		,	, o 11 o 1 a 11 1	- 13 P							
С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,80				0,15	4,7			< 0.15		Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical	properties
As welded	≥ 125	≥ 275	≥ 17	Melting range 568-638°C	Density ~2400 kg/mm ³

Note: electrical conductivity 15-19 Sm/mm²

Dia.	Length	Weight /					
mm.	mm.	package kg.					
1,6	1000	5					
2,0	1000	5					
2,4	1000	5					
3,2	1000	5					

TIG rods - aluminium

AWS A5.10: ER 5356 DIN 1732: WSG-AIMg 5 Werkstoffnr. 3.3556

Wire type:

TIG Solid wire

Current:

Welding positions:

Approvals: ABS, DNV, LR Shielding gas: 11 = Pure Ar

AL Mg 5 is our aluminium wire for TIG welding forged and cast aluminium-manganese and aluminium-mangesium alloys with a maximum of 5% Mg content. Typical applications include shipbuilding, tankbuilding railway and car industry. To be used in combination with tungsten electrodes type W.

Base materials to be welded:

- Aluminium-manganese alloys
- Aluminium-magnesium alloys
- Aluminium-MgSi alloys
- · Similar aluminium alloys

Applications:

- Shipyards/offshore
- Pressure vessel & boiler industry
 - Construction works
- Car industry/assembling
- Railways
- Bicycle industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
~Aluminil Mn	AL Mg 5	1	ı	-	1

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,40				0,15	5,0			< 0,15		Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength Mpa	Tensile strength MPa	Elongation Lo=5d - %	Physical	properties
As welded	≥ 110	≥ 240	≥ 17	Melting range 562-633°C	Density ~2640 kg/mm ³

Note: electrical conductivity 14-19 Sm/mm²

Dia. mm.	Length mm.	Weight / package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,2	1000	5
4,0	1000	5

Gas welding rods - aluminium

AWS A5.10: ER 4043

DIN 1732: G-AlSi 5 Werkstoffnr. 3.2245

Wire type: OAW Solid wire Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

AL Si 5 is aluminium wire for oxy-acetylene gas welding, repairing and surfacing forged and cast aluminium-silicon alloys and joining dissimilar aluminium alloys with max. 7%Si content. The easy flowing characteristics make the wire suitable for welding all aluminium castings (except AIMg castings).

Base materials to be welded:

- Aluminium-MgSi alloys
- Aluminium-Mg alloys up to 2,5% Mg
- Aluminium-MnCu alloys
- Aluminium-Si cast alloys
- · Joining dissimilar aluminium alloys

Applications:

- Construction works (aluminium base metals)
- Shipyards/offshore
- Repair shops

Equivalent product in alternative welding process:

Equivalent produc	Equivalent product in alternative welding process.							
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing			
Aluminil Si 5	AL Si 5	-	AL Si 5	-	Fluxcored AL Si5			

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,30	5,0									Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical p	properties
As welded	≥ 70	≥ 130	≥ 16	Melting range 573-625°C	Density -

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,2	1000	5
4,0	1000	5
5,0	1000	5

AL Si12 (OXY)

Gas welding rods - aluminium

AWS A5.10: ER 4047 DIN 1732: G-AlSi 12 Werkstoffnr, 3,2585

Wire type: OAW Solid wire Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

AL Si 12 is our aluminium wire for oxy-acetylene gas welding all types of aluminium castings and applications where good colour matching with base materials is important. Typical applications include repair welding, surfacing and construction welding: window frames, aluminium tubes, furniture, aluminium castings, engine blocks, automotive parts.

Base materials to be welded:

Aluminium-Si cast alloys up to 12% Si content:
 G-AlSi 12 (Cu), G-AlSi 10 Mg (Cu), G-AlSi 6 Cu 4

Applications:

- Construction works (aluminium base metals)
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Aluminil Si 12	AL Si 12	-	AL Si 12	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
	0,30	12,0									Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical p	properties
As welded	≥ 80	≥ 170	≥ 5	Melting range 573-585°C	Density -

Dia.	Length	Weight /
mm.	mm.	package kg.
1,6	1000	5
2,0	1000	5
2,4	1000	5
3,2	1000	5
4,0	1000	5

Fluxcored AL 99,5

Gas welding rods - aluminium

AWS A5.10: ER 1100 DIN 1732: G-Al 99,5 Werkstoffnr, 3.0259

Wire type: OAW Cored wire Welding positions:

→

Approvals:

Shielding gas: Oxy-acetylene

Fluxcored AL 99,5 is our flux cored aluminium wire rod for oxy-acetylene gas welding, repairing and surfacing pure aluminium and wrought aluminium alloys. The internal flux core makes the need of additional fluxes unnecessary.

Base materials to be welded:

- Pure aluminium acc. to DIN 1712 Al 99,8 and Al 99
- Pure aluminium Werkstoff nr. 3.0285 and 3.0205
- · Similar aluminium and wrought aluminium alloys

Applications:

- Construction works (aluminium base metals)
- · Repair shops

Equivalent product in alternative welding process:

Equivalent produc	Equivalent product in alternative welding process.								
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing				
Aluminil 99,8	AL 99,5	-	AL 99,5	-	-				

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
											> 99,5

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical p	properties
As welded	≥ 70	≥ 130	≥ 16	Melting range 647-658°C	Density -

Dia. mm.	Length mm.	Weight / package kg.
3,0	820	1

Fluxcored AL Si5

Gas welding rods - aluminium

AWS A5.10: ER 4043 DIN 1732: G-AlSi 5 Werkstoffnr, 3,2245

Wire type: OAW Cored wire Welding positions:

→

Approvals:

Shielding gas: Oxy-acetylene

Fluxcored Aluminium 5Si is our flux cored aluminium wire rod for oxy-acetylene gas welding, repairing and surfacing forged and cast aluminium-silicon alloys and joining dissimilar aluminium alloys with max. 7%Si content. The internal flux core makes the need of additional fluxes unnecessary.

Base materials to be welded:

- Aluminium-MgSi alloys
- Aluminium-Mg alloys up to 2,5% Mg
- Aluminium-MnCu alloys
- Aluminium-Si cast alloys
- . Joining dissimilar aluminium alloys

Applications:

- Construction works (aluminium base metals)
- Shipyards/offshore
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Aluminil Si	5 AL Si 5	-	AL Si 5	-	AL Si 5

Chemical composition, wt.% weld metal - typical:

1	С	Mn	Si	S	Р	Cr	Mg	Fe	Cu	Ti	Zn	Al
		0,30	5,0									Bal.

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Physical p	properties
As welded	≥ 70	≥ 130	≥ 16	Melting range 573-625°C	Density -

Dia.	Length	Weight /
mm.	mm.	package kg.
3,0	820	1

Non ferrous

Copper and copper alloys and their weldability

Copper and copper alloys are often chosen because of their corrosion resistance and electrical and thermal conductivity. This introduction identifies the various types of copper alloys and gives information about the production process of these materials and their weldability.

Material types

Copper and copper alloys are grouped to their principal alloying element:

- C Pure copper
- CH Copper with small alloy additions
- CZ Copper-zinc / brass
- NS Copper-zinc-nickel / nickel silver
- PB Copper-tinbronze (phosphor bronze alloys also contain phosphorous in their alloy)
- G Copper-tin-zinc, gun metal (some alloys contain lead)
- CA Copper-aluminium, aluminium bronze (most alloys also contain iron and nickel)
- CN Copper-nickel, cupronickel

Pure Copper (C)

Is normally supplied in on of three forms i.e. oxygen bearing, phosphorous deoxidised copper, oxygen-free copper. For welding jobs, oxygen free and phosphorous deoxidised copper should be selected as they are more easily welded. TIG and MIG are the preferred welding processes; OAW and SMAW can be used for repair jobs on oxygen bearing tough pitch copper. In order to counteract the high thermal conductivity He and NO-based gases can be used as an alternative to argon.

Copper with small alloy additions (CH)

Grades with additions of sulphur and tellurium are considered as not weldable. Copper with small additions of chromium, zirconium or beryllium can be welded but with care.

Copper-zinc alloys / brass (CZ) - Copper-zinc-nickel / nickel silver (NS)

Brasses can be separated into two weldable groups, low zinc (≤ 20%Zn) and high zinc (30 - 40%Zn). Nickel silvers contain 20 to 45%Zn and nickel to improve strength. The main problem in fusion welding these alloys is the volatilisation of the zinc, which results in white fumes of zinc oxide and weld metal porosity. Only low zinc brasses are considered suitable for fusion welding using TIG and MIG.

Bronzes - Tinbronze, Phosphor bronze (PB), Silicon bronze and gun metal (G)

Tinbronze contain between 1 and 10%Sn, phosphorbronze contains up to 10% phosphorous. Gunmetal is essentially a tinbronze with up to 5%Zn and may also have 5% lead. Silicon bronze contains typically 3% Si and 1% Mn and is the easiest to weld.

Bronzes are weldable using matching filler metals. Gas welding of phosphor bronzes is subject to porosity which can be avoided by using a higher level of deoxidants. Gun metal cannot be welded.

Aluminium bronze (CA)

There are two types of aluminium bronzes: single phase alloys containing between 5 and 10% aluminium, with a small amount of iron or nickel, and, two phase alloys containing up to 12% aluminium and about 5% iron with specific alloys containing Ni, Mn, Si. Gas shielded welding processes are preferred, TIG welding requires AC under Argon gas shielding or DC with a Helium gas.

Cupro-Nickels (CN)

Cupro-nickel alloys contain between 5 and 30% nickel with specific alloys having additions of iron and manganese; 90-10 and 70-30 (Cu-Ni) are commonly welded grades. These alloys are single phase and are weldable using inert gas processes and SMAW. A matching filler metal is normally used but 70-30 is often regarded as an universal filler metal for these alloys.

Non ferrous

Brazing with silver containing filler metals

Brazing with a silver-containing filler metal is one of the most versatile methods of metal joining used, for a number of reasons:

- It is cost-effective, there is very little braze alloy required to produce a brazed joint. With properly
 designed joints, brazing will compare favourably to any other metal joining method;
- The joints produced are strong. Strength data are typically close to and in occasions exceed the typical strength of the base materials brazed;
- · Joints produced are ductile, able to withstand considerable shock and vibration;
- The joints are generally produced easily and quickly;
- Brazing is excellent for dissimilar joining, you can easily join metals with widely different melting points;
- It can join metals with different cross sections. For example, joining 0,1 mm. thick copper foil to a 2,5 mm. thick steel plate is relatively easy to braze, it is almost impossible to weld;
- Joints have excellent stress distribution and heat transfer. The braze fillet formed is ideally shaped to resist fatigue;
- The process is highly suitable for automation. Typical automation methods include torch, furnace, induction and resistance heating;
- After brazing there is seldom any need for grinding, filling or mechanical finishing after the joint is completed. This is cost-reducing and particularly beneficial for assemblies to be plated;
- The joints virtually make themselves by capillary action, complex geometries are as easy to join as simple ones;
- Brazing is done at relatively low temperature ranges, excellent for heat input sensitive materials and workpieces subject to hot cracking.

The process

Silver brazing uses a silver-containing alloy with a melting temperature above 450°C but below the melting point of the metals to be joined. In brazing, the base metals are heated, usually to a point slightly above the liquidus (flow point) of the filler metal, causing it to melt. The filler metal then flows into the parallel joint clearance between the two base materials by capillary attraction and bonds to their surfaces through atomic attraction and diffusion. Unlike other methods of metal joining, in brazing we are interested in flowing the alloy between closely fitted members. For successful brazing you have to understand the fundamentals of brazing. When the following brazing fundamentals are understood, problem solving becomes a simple matter:

- · Good fit and proper clearance
- · Clean base metals
- Proper fixturing
- · Proper fluxing/atmosphere
- · Heating the assembly
- · Cleaning the brazed assembly

Good fit and proper clearance

Any braze alloy relies on capillary action to distribute the brazing filler metal throughout the joint interface. Capillary action is the force that pulls a liquid through two parallel surfaces. In brazing, the clearance at which capillary action is most effective is in the 0,03 to 0,10 mm. range. Joint clearance also has a profound impact on joint strength. Upon brazing stainless steel the strongest joint (930 Mpa) is achieved with a joint clearance of 0,038 mm. In every days practice any slip fit will give you a perfectly adequate brazed joint between two tubular parts. If you are joining two flat parts, you can simply rest one on top of the other. The clearance provided by the average "mill finish" is usually adequate enough to create capillary paths for the flow of molten filler metal.

Non ferrous

Cleaning the metals

Capilary action will work properly only when the surfaces of the metals are clean. Contaminants, such as oil, grease, rust, scale or dirt, must be removed. If they remain, they will form a barrier between the base metal surfaces and the brazing materials. Start by getting rid of oil and grease, usually done by dipping the part into a degreasing solvent, or by vapor degreasing, alkaline or aqueous cleaning. If the metal surfaces are coated with oxide or scale, remove those chemically of mechanically. For chemical removal, used an acid pickle treatment. Mechanical removal calls for abrasive cleaning. Particularly in repair brazing, where parts can be very dirty or rusted, you can speed the cleaning process by using emery cloth, a grinding wheel, file or metallic shot blast.

Once the parts are thoroughly clean, it is recommended to flux and braze as soon as possible. This way, there is the least chance for recontamination of surfaces.

Fluxing the parts

Flux is chemical compound applied to the joint surfaces before brazing. Its use is essential for brazing as the coating of flux on the joint area will shield the surfaces from the air, preventing oxide formation. The flux will also dissolve and absorb any oxides that form during heating or those not completely removed during the cleaning process. HILCO brazing fluxes conventionally comes in a powder, which is formed in a paste by stirring in water. Flux the assembly just before brazing, if possible.

Fluxing is usually an essential step in the brazing operation. There are a couple of exceptions to this rule. You can join copper to copper without flux by using a brazing filler metal specially formulated for the job, such as silver-copper-phosphorus alloys (L-Ag2P, L-Ag5P, L-Ag15P). The P content in these alloys act as a fluxing agent on copper.

Proper fixturing

If the shape and weight of the part permit, the simplest way to hold them together is by gravity. If you have a number of assemblies to braze it may be a good idea to use a brazing support fixture. If you need to fixture close to the joint use a non-wetting material for the fixture, such as titanium.

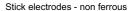
Heating the assembly

This step brazes the joint. It involves heating the joint to brazing temperature and flowing the filler metal through the joint. Both metals in the assembly should be heated as uniformly as possible to reach brazing temperature at the same time. Therefore, when joining a thick section to a thin section, more heat should be applied to the thick section. Or, when joining a good conductor of heat to a poor conductor, such as copper to stainless steel, more heat will have to be applied to the good conductor (copper). The flux is used as an indicator for even heating.

In manual brazing, when the assembly reaches brazing temperature, hold the brazing rod carefully against the joint area. Do not heat the brazing rod directly. The heated assembly will melt off a portion of the brazing rod, which will instantly be drawn by capillary action throughout the entire joint area. We recommend you to heat the side of the assembly opposite the point where you are going to feed the filler metal.

If using performs (slugs, washers, shims or special shapes of filler metal) preplace them in the joint before applying heat to the assembly.

Cleaning the brazed assembly


Postcleaning of brazed assemblies is done primarily to remove flux residue. Flux removal is a simple, but essential, operation to prevent flux residue to attack the base metal, possibly weakening the joint. Most fluxes are water soluble, the easiest way to remove them is to submerse the assembly in hot water.

Typical applications - silver brazing

Application	Metal t	o metal	Filler metal	Brazing flux	Working temperature °C
Water and gas installations	Copper	Copper	Phosphorbr. 93-7	-	720
	Copper	Copper	L-Ag 2P	Silver solder flux	710
	Copper	Copper	L-Ag 45 Sn	Silver solder flux	670
Galvanized pipe,	Steel	Steel	L-Ag 30 Cd	Silver solder flux	680
shipbuilding, offshore and	Cupro-nickel	Tinbronze	L-Ag 50 Cd	Silver solder flux	660
support pipes	Brass	Tinbronze	L-Ag 50 Cd	Silver solder flux	660
Refrigeration units without	Copper	Copper	L-Ag 5P	-	710
ammonia	Copper	Tinbronze	L-Ag 15P	Silver solder flux	710
	Copper	Steel	L-Ag 40 Cd	Silver solder flux	610
	Steel	Steel	L-Ag 30 Cd	Silver solder flux	680
	Stainless	Stainless	L-Ag 40 Cd	Silver solder flux	610
Heating installations	Copper	Copper	Phosphorbr. 93-7	-	720
	Copper	Tinbronze	L-Ag 2P	Silver solder flux	710
	Copper	Steel	L-Ag 30 Cd	Silver solder flux	680
	Steel	Steel	L-Ag 30 Cd	Silver solder flux	680
Heat exchangers, oil	Copper	Copper	L-Ag 2P	-	710
coolers, air conditioners,	Copper	Steel	L-Ag 30 Cd	Silver solder flux	680
gas burners, boilers	Steel	Steel	L-Ag 40 Cd	Silver solder flux	680
	Steel	Brass	L-Ag 30 Cd	Silver solder flux	610
Oil piping, fuel tanks and	Steel	Steel	L-Ag 20 Cd	Silver solder flux	750
vehicle radiators	Steel	Brass	L-Ag 30 Cd	Silver solder flux	680
	Steel	Copper	L-Ag 40 Cd	Silver solder flux	610
Instrument parts	Copper	Copper	L-Ag 2P	-	710
•	Copper	Copper	L-Ag 5P	-	710
	Copper	Stainless	L-Ag 40 Cd	Silver solder flux	610
	Brass	Brass	L-Ag 40 Cd	Silver solder flux	610
	Brass	Copper	L-Ag 15P	-	650
	Brass	Stainless	L-Ag 40 Cd	Silver solder flux	610
Parts in contact with	Stainless	Stainless	L-Ag 55 Sn	Silver solder flux	650
potable water	Stainless	Copper	L-Ag 45 Sn	Silver solder flux	670
	Stainless	Brass	L-Ag 45 Sn	Silver solder flux	670
Heating, cooling and	Copper	Copper	L-Ag 2P	-	710
kitchen equipment for in	Copper	Copper	L-Ag 5P	-	710
house usage	Copper	Copper	L-Ag 15P	-	710
	Brass	Brass	L-Ag 34 Sn	Silver solder flux	710
	Brass	Copper	L-Ag 45 Sn	Silver solder flux	670
	Brass	Stainless	L-Ag 45 Sn	Silver solder flux	670
Tubular furniture and	Steel	Steel	L-Ag 20 Cd	Silver solder flux	750
camping gas equipment	Steel	Copper	L-Ag 30 Cd	Silver solder flux	680
		Brass	L-Ag 30 Cd	Silver solder flux	680
		Stainless	L-Ag 55 Sn	Silver solder flux	650
	Stainless		L-Ag 55 Sn	Silver solder flux	650

AWS A5.6: E CuSn-C DIN 1733: EL-CuSn7 Werkstoffnr 2.1025

Coating type:

Basic

Current:

=+

Welding positions:

<u>_</u>

Approvals:

Tip colour: Gold Printing:

E CuSn / C Bronsil

Bronsil is our basic coated tin-bronze electrode for joining and surfacing copper and copper alloys, phosphor- and tin-bronzes as well as copper-clad plates in mechanical and plant engineering and shipbuilding. The electrode is also suitable for cladding steel and minor repair jobs in cast iron and C/Mn steel. Typical applications include repairing rotors and ship screws.

Base materials to be welded:

- Tin-bronze alloys CuSn 2, CuSn 6, CuSn 8, CuSn 6 Zn
- WNr. 2.1010, 2.1020, 2.1030, 2.1080

Applications:

- Shipyards/offshore
- Repair shops
- Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
_	Tinbronze 94-6	_	Tinbronze 94-6	_	_

Chemical composition, wt. % weld metal – typical:

С	Mn	Si	S	Р	Sn	Fe	Мо	Cu	Nb	٧	Al
	1,50	0,50	0,010	0,15	7,50	0,20		Bal.			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 200	≥ 280	≥ 25	<u>></u> 100 HB

Packaging and welding data:

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A
2,5	350	21,7	60-80
3,2	350	34,5	80-100
4,0	350	68,2	100-120

AWS A5.6: E CuNi DIN 1733: EL-CuNi 30 Mn Werkstoffnr 2.0837

Coating type: Current:

Basic

Welding positions:

Approvals: Tip colour: Printing: HILCO E Cu Ni

Cuni is our basic coated copper-nickel electrode for joining and surfacing alloys of similar composition with up to 30% nickel as well as non-ferrous alloys and dissimilar steel grades. The deposit weld metal is highly resistant to seawater, typical applications include usage in shipbuilding, oil refineries, food processing industry, the engineering of general corrosion proof vessels and equipment.

Base materials to be welded:

- Copper-nickel alloys up to 30% Ni content
- CuNi30Mn, CuNi30Mn1Fe, CuNi10Fe1Mn, CuNi20Fe, CuNi25, CuNi44Mn
- WNr. 2.0890, 2.0882, 2.0872, 2.0878, 2.0830, 2.0842
- Dissimilar joining nickel to copper-nickel alloys

Applications:

- Shipyards/offshore
- Repair shops
- Petrochemical industry
- Food processing industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	Cunifer 70-30	-	-

Chemical composition, wt. % weld metal - typical:

С	Mn	Si	S	Р	Sn	Fe	Мо	Cu	Ni	٧	Al
0,015	1,80	0,40	0,010	0,15		0,60		Bal.	30,0		

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 240	≥ 390	≥ 25	105 HB

Packaging and welding data:

Dia. mm.	Length mm.	Weight (kgs) 1000 pcs.	Current A	
3,2	350	34,5	80-105	
4,0	350	68,2	110-130	

Tinbronze 94-6

MIG wires - non ferrous

AWS A5.7: ERCuSn-A DIN 1733: MSG-CuSn6 Werkstoffnr. 2.1022

Wire type: MIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Tinbronze 94-6 is our tin-bronze alloyed solid wire for MIG welding and surfacing copper and copper alloys, phosphor- and tin-bronzes as well as copper-clad plates in mechanical and plant engineering and shipbuilding. Tinbronze 94-6 is also suitable for cladding steel and minor repair jobs in cast iron and C/Mn steel. Typical applications include repairing rotors and ship screws.

Base materials to be welded:

- Tin-bronze alloys CuSn 2, CuSn 6, CuSn 8, CuSn 6 Zn
- WNr. 2.1010, 2.1020, 2.1030, 2.1080

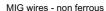
Applications:

- Shipyards/offshore
- Repair shops
- Petrochemical industry

Equivalent product in alternative welding process:

Equivalent produc	ot iii aitoimativo wo	ianig process.			
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Bronsil	-	-	Tinbronze 94-6	-	-

Chemical composition, wt.% weld metal – typical:


С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
				0,25			6,5	Bal.			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 150	≥ 300	20	80 HB

. wonugg was		
Dia.	Spooltype	Weight /
mm.		spool kg.
1,2	S300	~12
1,6	S300	~12
2,4	S300	~12

Albronze 8

AWS A5.7: ER CuAl-A1 DIN 1733: MSG-CuAl8 Werkstoffnr. 2.0921

Wire type: MIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Albronze 8 is our Cu-Al alloyed solid wire for MIG welding and surfacing aluminium bronzes like CuAl5, CuAl8. Typical applications include surfacing of copper, brass, special brass (CuZn20Al), unalloyed and low alloyed steels, joining seawater conducting corrosion resistant aluminium bronze or special brass pipelines. For multi-layer surfacing we recommend puls-arc welding.

Base materials to be welded:

- Aluminium bronze alloys: CuAl8Fe3, CuAl10Fe3Mn2, CuAl9Mn2, CuAl10Ni5Fe4
- Cast Aluminium bronzes: G-CuAl8Mn, G-CuAl10Ni,
- Surfacing copper, brass, special brass, steel
- Joining brass (CuZn20Al) pipelines

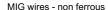
Applications:

- · Shipyards/offshore
- Pressure vessel & boiler industry
- Repair shops
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	_	-	-	-	=

Chemical composition, wt.% weld metal - typical:


•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70 11 G.G. 111	ota. typ							
С	Mn	Si	S	Р	Ni	Mg	Fe	Cu	Ti	Zn	Al
								Bal.			8.0

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 180	≥ 430	≥ 40	120 HB

Dia. mm.	Spooltype	Weight / spool kg.
1,2	S300	~12

Albronze 35

AWS A5.7: ER CuNiAl DIN 1733: MSG-CuAl8Ni6 Werkstoffnr. 2.0923

Wire type: MIG Solid wire Current:

Welding positions:

1_,

Approvals:

Shielding gas: I1, Pure Ar

Albronze 35 is our Cu-Ni-Al alloyed solid wire for MIG welding complex aluminium bronzes and surfacing unalloyed and low alloyed steels. Deposit weld metal has excellent resistance to seawater. Typical applications include shiprepair jobs (rotors and screws), machines, boilers and pumps. For multi-layer surfacing on steel we recommend puls-arc welding.

Base materials to be welded:

- Aluminium bronze alloys: CuAl10Ni, CuAl10Fe, CuAl8Fe
- Cast Aluminium bronzes: G-CuAl10Ni, G-CuAl9Ni, G-CuAl10
- · Surfacing on unalloyed and low alloyed steels

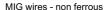
Applications:

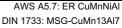
- · Shipyards/offshore
- · Pressure vessel & boiler industry
- Repair shops

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	-	-	=

Chemical composition, wt.% weld metal - typical:


Chemical Composition, War Wola motal Typican											
С	Mn	Si	S	Р	Ni	Mg	Fe	Cu	Ti	Zn	Al
	1,50				4,50		3,50	> 77,00			9,00


Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 400	≥ 530	≥ 30	150 HB

Dia. mm.	Spooltype	Weight / spool kg.
1,2	S300	~12

Albronze 300

Werkstoffnr. 2.1367

Wire type: MIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Albronze 300 is our Cu-Mn-Ni-Al alloyed solid wire for MIG welding and surfacing complex aluminium bronzes with high Mn content and cast-aluminium bronzes. The high strength deposit weld metal is seawater resistant. Typical applications include surfacing of steel and cast iron, joining of GGG-steel, GGG-manganese steel, GGG-GGG, propellers, armatures, gliding surfacing, drawing tools.

Base materials to be welded:

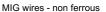
- Aluminium bronze alloys: CuAl9Mn2, CuAl10Ni5Fe4, CuAl11Ni6Fe5, CuAl10Fe3Mn2
- Cast Aluminium bronzes: G-CuAl8Mn, G-CuAl10Fe,
- Surfacing steel and cast iron
- Joining cast-steel, cast-manganese steels, cast iron

Applications:

- · Shipyards/offshore
- Pressure vessel & boiler industry
- Repair shops
- · Petrochemical industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	-	-	-


Chemical composition, wt.% weld metal - typical:

0110111100		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70 11 O.G. 111	ota. typ							
С	Mn	Si	S	Р	Ni	Mg	Fe	Cu	Ti	Zn	Al
	13.0				2.50		2.50	Bal.			8.0

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 600	≥ 900	≥ 10	> 200 HB

Dia. mm.	Spooltype	Weight / spool kg.
1,2	S300	~12

AWS A5.7: ER CuSi-A DIN 1733: MSG-CuSi3 Werkstoffnr, 2.1461

Wire type: MIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11, Pure Ar

Cusi3 is our Copper silicon alloyed solid wire for MIG welding copper alloys, brass and galvanised steel grades. Typical applications include joining CuSi2Mn and CuSi3Mn, surfacing unalloyed and low alloyed steels, joining zinc coated steels in automotive industries.

Base materials to be welded:

- · Copper silicon alloys CuSi2Mn, CuSi3Mn
- Galvanised steels
- · Surfacing on unalloyed and low alloyed steels

Applications:

- Shipyards/offshore
- Repair shops
- · Car industry/assembling

Equivalent product in alternative welding process:

Equivalent product in alternative welding process.											
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing						
-	-	-	-	-	-						

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Mg	Fe	Cu	Ti	Zn	Al
	1,20	3,0					< 0,30	Bal.			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 300	≥ 380	≥ 40	90 HB

Dia. mm.	Spooltype	Weight / spool kg.
1,2	S300	~12

Tinbronze 94-6 (TIG)

TIG rods - non ferrous

AWS A5.7: ERCuSn-A DIN 1733: WSG-CuSn6 Werkstoffnr. 2.1022

Wire type:

TIG Solid wire

Current:

~

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Tinbronze 94-6 is our tin-bronze alloyed solid wire for TIG welding and surfacing copper and copper alloys, phosphor- and tin-bronzes as well as copper-clad plates in mechanical and plant engineering and shipbuilding. Tinbronze 94-6 is also suitable for cladding steel and minor repair jobs in cast iron and C/Mn steel. Typical applications include repairing rotors and ship screws. To be used in combination with tungsten electrodes type WT 20, thorium free WC 20 or WL 20.

Base materials to be welded:

- Tin-bronze alloys CuSn 2, CuSn 6, CuSn 8, CuSn 6 Zn
- WNr. 2.1010, 2.1020, 2.1030, 2.1080

Applications:

- Shipyards/offshore
- Repair shops
- Petrochemical industry

Equivalent product in alternative welding process:

	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
I	Bronsil	Tinbronze 94-6	-	-	-	-

Chemical composition, wt.% weld metal - typical:

ſ	С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
ſ					0,25			6,5	Bal.			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation A5 - %	Hardness
As welded	≥ 150	≥ 300	20	80 HB

Dia. mm.	Length mm.	Weight / package kg.
1,5	1000	5
2,0	1000	5
2,4	1000	5
3,0	1000	5

Cunifer 70-30

AWS A5.7: ER CuNi DIN 1733: WSG-CuNi30Fe Werkstoffnr, 2.0837

Wire type: TIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Cunifer 70-30 is solid copper-nickel wire for TIG welding and surfacing alloys of similar composition with up to 30% nickel as well as non-ferrous alloys and dissimilar steel grades. The deposit weld metal is highly resistant to seawater, typical applications include usage in shipbuilding, oil refineries, food processing industry, the engineering of general corrosion proof vessels and equipment.

Base materials to be welded:

- · Copper-nickel alloys up to 30% Ni content
- CuNi30Mn, CuNi30Mn1Fe, CuNi10Fe1Mn, CuNi20Fe, CuNi25. CuNi44Mn
- WNr. 2.0890, 2.0882, 2.0872, 2.0878, 2.0830, 2.0842
- · Dissimilar joining nickel to copper-nickel alloys

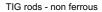
Applications:

- Shipyards/offshore
- Repair shops
- Petrochemical industry
- Food processing industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Cuni	-	-	-	-	-

Chemical composition, wt.% weld metal – typical:


The state of the s											
С	Mn	Si	S	Р	Ni	Mg	Fe	Cu	Ti	Zn	Al
	1.00				31.0		0.50	Bal.	0.40		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 200	≥ 420	≥ 30	115 HB

Dia.	Length	Weight /
mm.	mm.	package kg.
2,0	1000	5
2,4	1000	5
3,2	1000	5

Cunifer 90-10

AWS A5.7: ER CuNi DIN 1733: WSG-CuNi10Fe Werkstoffnr. 2.0873

Wire type: TIG Solid wire Current:

Welding positions:

Approvals:

Shielding gas: 11 = Pure Ar

Cunifer 90-10 is solid copper-nickel wire for TIG welding and surfacing alloys of similar composition with up to 10% nickel as well as non-ferrous alloys and dissimilar steel grades. The deposit weld metal is highly resistant to seawater, typical applications include usage in shipbuilding, oil refineries, food processing industry, the engineering of general corrosion proof vessels and equipment.

Base materials to be welded:

- · Copper-nickel alloys up to 10% Ni content
- CuNi5Fe, CuNi10Fe
- WNr. 2.0862, 2.0872
- Dissimilar joining nickel to copper-nickel alloys

Applications:

- Shipyards/offshore
- Repair shops
- Petrochemical industry
- · Food processing industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
Cuni	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

The state of the s											
С	Mn	Si	S	Р	Ni	Mg	Fe	Cu	Ti	Zn	Al
	1.00				10.5		1.50	Bal.	0.40		

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Hardness
As welded	≥ 150	≥ 300	≥ 30	100 HB

Notes:

Dia. mm.	Length mm.	Weight / package kg.
1,5	1000	5
2,0	1000	5
2,5	1000	5

AWS A5.8: ~RB CuZnA

EN 1044: ~CU 304

DIN 1733: L-SoMs 60 / DIN 8513: ~L-CuZn39Sn

Werkstoffnr, 2,0531

Wire type:

OAW Solid wire

Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Bronze C is our low fuming bronze (brass) brazing rod for joining and surfacing steel, copper and copper alloys, brass, grey and malleable cast iron, nickel and nickel alloys. Bronze C produces poreless joints, color matching with brass. Applications are universal but typical for joining galvanized steel (without destroying its zinc layer), joining non-ferrous metals, tube structures, sanitary installations, fitting and repair work, bicycles, motorcycles, automotive industries, furniture industry. The Mn content guarantees strong and high quality joints.

Base materials to be welded:

- Similar and dissimilar joining
- To be used in combination with HILCO Bronze Flux.

Applications:

- · Shipyards/offshore
- Constructionworks
- Repair shops
- · Car industry/assembling
- Bicycle industry
- Office furniture industry
- Marine equipment

Equivalent product in alternative welding process:

SMA	w	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-		-	-	-	-	Bronze F, Autobronze

Chemical composition, wt.% weld metal - typical:

 		, ,									
С	Mn	Si	S	Р	Ni	Sn	Fe	Cu	Ti	Zn	Al
•	0,60	0,40			≤ 0,01	0,35	≤ 0,10	60,0		Bal.	≤ 0,005

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 490	≥ 35	870-900°C

Dia.	Length	Weight /
mm.	mm.	package kg.
1,5	1000	5
2,0	1000	5
2,5	1000	5
3,0	1000	5
4,0	1000	5
5,0	1000	5

Gas welding rods - non ferrous - brazing

AWS A5.8: RB CuZn-A

EN 1044: CU 301 DIN 8513: L-CuZn40

Werkstoffnr. 2.0367

Wire type:

OAW Solid wire (fluxcoated)

Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Bronze F is our flux coated low fuming bronze (brass) brazing rod for joining and surfacing steel, copper and copper alloys, brass, grey and malleable cast iron, nickel and nickel alloys. Bronze F produces poreless joints, color matching with brass. The flux coating makes use of additional brazing fluxes unnecessary.

Base materials to be welded:

· Similar and dissimilar joining

Applications:

- Shipyards/offshore
- Constructionworks
- Repair shops
- · Car industry/assembling
- Bicycle industry
- Office furniture industry
- Marine equipment

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
=	-	-	-	ı	Bronze C, Autobronze

Chemical composition, wt.% weld metal - typical:

Ī	С	Mn	Si	S	Р	Ni	Sn	Fe	Cu	Ti	Zn	Al
I			0,30				0,20		60,0		Bal.	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 350	≥ 35	875-895°C

Dia.	Length	Weight /
mm.	mm.	package kg.
2,0	500	2,5
2,5	500	2,5
3,0	500	2,5

Gas welding rods - non ferrous - brazing

AWS A5.8: RB CuZn-A

EN 1044: CU 306 DIN 8513: L-CuZn39Sn

Werkstoffnr. 2.0533

Wire type: OAW Cored wire Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Bronze P is our flux cored low fuming bronze (brass) brazing rod for joining and surfacing steel, copper and copper alloys, brass, grey and malleable cast iron, nickel and nickel alloys. Autobronze produces poreless joints, color matching with brass. The internal flux core makes the need of additional fluxes unnecessary.

Base materials to be welded:

· Similar and dissimilar joining

Applications:

- · Shipyards/offshore
- · Construction works
- Repair shops
- · Car industry/assembling
- Bicycle industry
- Office furniture industry
- Marine equipment

Equivalent product in alternative welding process:

Equivalent product in	Equivalent product in diternative welding process.											
SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing							
-	-	-	-	-	-							

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Sn	Fe	Cu	Ti	Zn	Al
	0,60	1,00			0,85	0,30		59,0		Bal.	

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 400	≥ 30	870-890°C

Dia. mm.	Length mm.	Weight / package kg.
2,5	500	4

Autobronze

Gas welding rods - non ferrous - brazing

AWS A5.8: RB CuZn-A

EN 1044: CU 306 DIN 8513: L-CuZn39Sn

Werkstoffnr. 2.0533

Wire type:

OAW Solid wire (flux coated)

Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Autobronze is our carved flux coated low fuming bronze (brass) brazing rod for joining and surfacing steel, copper and copper alloys, brass, grey and malleable cast iron, nickel and nickel alloys. Autobronze produces poreless joints, color matching with brass. The flux coating makes use of additional brazing fluxes unnecessary.

Base materials to be welded:

· Similar and dissimilar joining

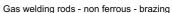
Applications:

- · Shipyards/offshore
- Constructionworks
- · Repair shops
- · Car industry/assembling
- Bicycle industry
- Office furniture industry
- Marine equipment

Equivalent product in alternative welding process:

SMA	AW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-		-	ı	ı	-	1

Chemical composition, wt.% weld metal - typical:


 		, ,									
С	Mn	Si	S	Р	Ni	Sn	Fe	Cu	Ti	Zn	Al
•	0,60	1,00			0,85	0,30		59,0		Bal.	

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 400	≥ 30	870-890°C

Dia. mm.	Length mm.	Weight / package kg.
2,0	500	2,5
2,5	500	2,5

AWS A5.8: RB CuZn-D

EN 1044: CU 305

DIN 8513: L-CuNi10Zn42 Werkstoffnr. 2.0531

Wire type: OAW Solid wire Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Bronze N is our high strength Nickel-bronze brazing rod for joining and surfacing steel, malleable cast iron, nickel and nickel alloys. Typical applications include joints subject to severe mechanical loads, soldering butt joints on heavily stressed components, sleeveless pipe assemblies in the car industry.

Base materials to be welded:

- Similar and dissimilar joining
- To be used in combination with HILCO Bronze Flux.

Applications:

- Shipyards/offshore
- Construction works
- Repair shops
- · Car industry/assembling
- Bicycle industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Sn	Fe	Cu	Ti	Zn	Al
	0,20	0,25			10,0	0,20		48,0		Bal.	

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 690	≥ 18	890-920°C

Dia. mm.	Length mm.	Weight / package kg.		
1,5	500	5		
2,0	500 / 1000	5		
2,5	500 / 1000	5		
3,0	500 / 1000	5		

Phosphorbronze 92-8

Gas welding rods - non ferrous - brazing

AWS A5.8: BCuP-2

EN 1044: CP 202 Werkstoffnr. 2.1465

Wire type: OAW Solid wire Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Phosphorbronze 92-8 is our thin flowing Copper-Phosphorous alloy used for brazing copper-to-copper and copper to brass. Phosphorbronze 92-8 requires good fit up. The rod is self fluxing, no need for separate flux, when joining copper to copper.

Base materials to be welded:

- Joining copper to copper
- · Joining copper to brass (Silver solder flux required)

Applications:

- Pressure vessel & boiler industry
- Construction works
- Repair shops
- Refrigerator industry

Equivalent product in alternative welding process:

ĺ	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
İ	-	-	-	-	-	L-Ag 2P

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
				7.1				92.9			

Mechanical properties, weld metal - typical:

moonamoa. p. opo. ao	o, mora motar typroun			
Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 250	5	710-820°C

Dia. mm.	Length mm.	Weight / package kg.	
2,0	500	5	
2,5	500	5	

Phosphorbronze 93-7

Gas welding rods - non ferrous - brazing

AWS A5.8: ~BCuP-2

EN 1044: CP 202 Werkstoffnr. 2.1463

Wire type: OAW Solid wire Welding positions:

Approvals:

Shielding gas: Oxy-acetylene

Phosphorbronze 93-7 is our thin flowing Copper-Phosphorous alloy used for brazing copper-to-copper. The alloy has good bridging capacities and requires a lesser good fit up than Phosphorbronze 92-8. The rod is self fluxing, no need for separate flux, when joining copper to copper.

Base materials to be welded:

- Joining copper to copper
- Joining copper to brass (Silver solder flux required)

Applications:

- Pressure vessel & boiler industry
- Construction works
- Repair shops
- · Refrigerator industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding /
					brazing
-	-	-	-	-	L-Ag 2P

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
				6.8				93.2			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 250	5	710-820°C

Dia.	Length	Weight /
mm.	mm.	package kg.
2,0	500	5
2,5	500	5

Phosphorbronze 94-6

Gas welding rods - non ferrous - brazing

AWS A5.8: BCuP-2

EN 1044: CP 202 Werkstoffnr. 2.1462

Wire type: OAW Solid wire Welding positions:

→

Approvals:

Shielding gas: Oxy-acetylene

Phosphorbronze 94-6 is our easy flowing Copper-Phosphorous alloy used for brazing copper-to-copper and copper to brass. Phosphorbronze 94-6 requires good fit up and is suitable for capillary brazing. The rod is self fluxing, no need for separate flux, when joining copper to copper.

Base materials to be welded:

- Joining copper to copper
- Joining copper to brass (Silver solder flux required)

Applications:

- Pressure vessel & boiler industry
- Construction works
- Repair shops
- Refrigerator industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	-	-	=

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
				7.4				92.6			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 250	5	710-890°C

Dia.	Length	Weight /
mm.	mm.	package kg.
2,0	500	5
2,5	500	5

Silver-Copper-Phos	Silver-Copper-Phosphorus Brazing rods							
Туре	Comp	osition	1		Melting range	Classification		
	Ag	Cu	Р	others		AWS A5.8	EN 1044	DIN 8513
L-Ag 2 P ∗	2,0	91,5	6,5	-	645-825°C	~BCuP-6	CP 105	L-Ag2P
L-Ag 5 P ∗	5,0	89,0	6,0	-	645-815°C	BCuP-3	CP 105	L-Ag5P
L-Ag 15 P *	14,5	80,0	4,8	-	645-800°C	BCuP-5	CP 102	L-Ag15P

Туре	Comp	osition	1		Melting	Classification	n	
				ı	range			1
	Ag	Cu	Zn	others		AWS A5.8	EN 1044	DIN 8513
L-Ag 20	20,0	44,0	35,8	Si: 0,2	690-810°C	-	AG 206	L-Ag20
L-Ag 25	25,0	41,0	34,0	-	700-800°C	-	~AG 205	L-Ag25
L-Ag 25 Sn	25,0	40,0	33,0	Sn: 2,0	680-760°C	BAg-37	AG 108	-
L-Ag 30	30,0	34,5	35,5	-	695-770°C	~BAg-20	~AG 204	-
L-Ag 34 Sn *	34,0	36,0	27,0	Sn: 3,0	630-730°C	~BAg-35	AG 106	L-Ag34Sn
L-Ag 38 Sn 1	38,0	31,0	28,8	Sn: 2,2	660-700°C	BAg-34	~AG 105	-
L-Ag 44 ¹	44,0	30,0	26,0	-	675-735°C	BAg-5	AG 203	L-Ag44
L-Ag 45 Sn *	45,0	27,0	25,0	Sn: 3,0	640-680°C	BAg-36	AG 104	L-Ag45Sn
L-Ag 55 Sn *1	55,0	21,0	22,0	Sn: 2,0	630-660°C	~BAg-7	AG 103	L-Ag55Sn
L-Ag 60	60,0	26,0	14,0	-	695-730°C	-	AG 202	L-Ag60
L-Ag 64	64,0	20,0	16,0	-	690-720°C	BAg-9	~AG 201	L-Ag64

Cadmium containing Silver Brazing Rods								
Туре	Composition		Melting	Classification				
		•			range			
	Ag	Cu	Zn	others		AWS A5.8	EN 1044	DIN 8513
L-Ag 20 Cd *1	20,0	39,0	29,0	Cd: 12,0	600-760°C	-	~AG 309	L-Ag20Cd
L-Ag 30 Cd *1	30,0	28,0	21,0	Cd: 21,0	600-690°C	BAg-2a	AG 306	L-Ag30Cd
L-Ag 34 Cd	34,0	25,0	20,0	Cd: 21,0	610-670°C	~BAg-2	~AG 305	L-Ag34Cd
L-Ag 40 Cd *1	40,0	19,0	21,0	Cd: 20,0	595-630°C	-	AG 304	L-Ag40Cd
L-Ag 45 Cd	45,0	15,0	16,0	Cd: 24,0	605-620°C	BAg-1	AG 302	L-Ag45Cd
L-Ag 50 Cd *	50,0	15,5	16,5	Cd: 18,0	625-635°C	~BAg-1a	AG 301	L-Ag50Cd
These Silver Brazing	Rods o	contain	CADM	I UM! Take p	orecautions wh	en brazing.		

Notes:

^{*} for these Silver Brazing Rods an extensive data-sheet can be found in this handbook 1 these Silver Brazing Rods are also available as fluxcoated rods (FC)

AWS A5.8: ~BCuP-6

EN 1044: CP 105

Wire type: OAW Solid wire Welding positions:

-

Approvals:

Shielding gas: Oxy-acetylene

L-Ag 2 P is our Silver-Copper-Phosphorous based brazing rod mainly used for brazing copper and copper alloys. The addition of silver improves the flowing characteristics and makes L-AG 2 P especially suitable for capillary brazing. If the joint is subject to stresses it is recommended to use either L-Ag 5 P or L-Ag 15 P. The rod is self fluxing, no need for separate flux, when joining copper to copper.

Base materials to be welded:

- Joining copper to copper
- Joining copper to brass (Silver solder flux required)

Applications:

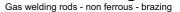
- · Shipyards/offshore
- · Construction works
- Repair shops
- · Refrigerator industry
- Air conditioner industry

Equivalent product in alternative welding process:

_	=quiralent preduction		.g p. 00000.			
	SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
I	-	-	-	-	-	Phosphorbr. 93-7

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
				6,50*		2,0		91,50			


Note: * AWS classification requires presence of min. 6,8% P

Mechanical properties, weld metal – typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 250	•	645-825°C

Note: Electrical conductivity 5 Sm/mm²

Dia. mm.	Length mm.	Weight / package kg.
1,5	500	5
2,0	500	5

AWS A5.8: BCuP-3

EN 1044: CP 104

Wire type: OAW Solid wire Welding positions:

→

Approvals:

Shielding gas: Oxy-acetylene

L-Ag 5 P is our Silver-Copper-Phosphorous based brazing rod mainly used for brazing copper and copper alloys. The addition of 5% silver improves the flowing characteristics and makes L-Ag 5 P especially suitable for usage in the electrical industry and apparatus- and ship construction for electric motors and copper tubes. The rod is self fluxing, no need for separate flux, when joining copper to copper.

Base materials to be welded:

- Joining copper to copper
- Joining copper to brass (Silver solder flux required)

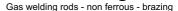
Applications:

- · Shipyards/offshore
- · Construction works
- Repair shops
- · Refrigerator industry
- Air conditioner industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:


	u. 00po.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, o 11 o . u	ota. typ							
С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
				6.0		5.0		89.0			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 250	-	645-815°C

Note: Electrical conductivity 6 Sm/mm²

i doktaging dat	r dokaging data.							
Dia.	Length	Weight /						
mm.	mm.	package kg.						
1,5	500	5						
2,0	500	5						

AWS A5.8: BCuP-5

EN 1044: CP 102

Wire type: OAW Solid wire Welding positions:

-

Approvals:

Shielding gas:

Oxy-acetylene gas mixture

L-Ag 15 P is our thin flowing Silver-Copper-Phosphorous based brazing rod that gives ductile joints when used for brazing copper to copper. L-Ag 15 P is especially suitable for usage as a preform in brazing particularly with resistance heating. Typical applications include assembling motors and busbars in the electrical industry. The rod is self fluxing, no need for separate flux, when joining copper to copper.

Base materials to be welded:

- Joining copper to copper
- Joining copper to brass (Silver solder flux required)

Applications:

- Shipyards/offshore
- · Construction works
- Repair shops
- · Refrigerator industry
- Air conditioner industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	ı	1	-	

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
				4,8		14,5		80,0			

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 250	-	645-800°C

Note: Electrical conductivity 10 Sm/mm²

Dia. mm.	Length mm.	Weight / package kg.	
1,5	500	5	
2,0	500	5	

AWS A5.8: BAg-2a

EN 1044: AG 306

Wire type: OAW Solid wire Welding positions:

→

Approvals:

Shielding gas: Oxy-acetylene

L-Ag 30 Cd is our silver brazing rod for similar and dissimilar joining steel, stainless steel, nickel and nickel alloys, copper and copper alloys. Typical applications include electrical industry, equipment engineering, household appliances, sanitary installations, shipbuilding, brazing nipples, fittings and copper pipework. L-Ag 30 Cd is standard available as bare rod which is used in combination with silver solder brazing flux. Fluxcoated rods are available on request (L-Ag30CdFC). **CONTAINS CADMIUM!**

Base materials to be welded:

Brazing steel, copper and nickel

Applications:

- · Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Repair shops
- Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

The initial composition, many moral moral special											
С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
						30.0		28.0		21.0	

Note: Cd - 21,0%

Mechanical properties, weld metal - typical:

moonamoar properties	iconamoai proportico, word metai - typican								
Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range					
As welded	=	≥ 450	≥ 30	600-690°C					

Dia. mm.	Length mm.	Weight / package kg.	
1,5	500	5	
2,0	500	5	

AWS A5.8: ~BAg-35

EN 1044: AG 106

Wire type: OAW Solid wire Welding positions:

-

Approvals:

Shielding gas: Oxy-acetylene

L-Ag 34 Sn is our cadmium free silver brazing rod for similar and dissimilar joining steel, nickel and nickel alloys, copper and copper alloys. Suitable for working temperatures up to 200°C. Typical applications include food processing industry, breweries, dairy industry, household products and copper tube installations. L-Ag 34 Sn has good flowing characteristics, is standard available as bare rod which is used in combination with silver solder brazing flux.

Base materials to be welded:

• Brazing steel, copper and nickel

Applications:

- Pressure vessel & boiler industry
- · Construction works
- Repair shops
- · Food processing industry
- Dairy industry
- Beer breweries

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

I	С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
I							34,0		36,0		27,0	

Note: Sn - 3,0%

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 380	≥ 20	630-730°C

. wonugg was		
Dia.	Length	Weight /
mm.	mm.	package kg.
2,0	500	5

EN 1044: AG 304

Wire type: OAW Solid wire Welding positions:

-

Approvals:

Shielding gas: Oxy-acetylene

L-Ag 40 Cd is our silver brazing rod with very strong capillary action. Suitable for similar and dissimilar joining steel, stainless steel, grey and malleable cast iron, nickel and nickel alloys, copper and copper alloys, brass, bronzes, tungsten carbide, silver and gold. Typical applications include production of instruments, equipment engineering, watchmaking, shipbuilding, electrical engineering. L-Ag 40 Cd is standard a bare rod which is used in combination with silver solder brazing flux. Fluxcoated rods are available on request (L-Ag40CdFC). **CONTAINS CADMIUM!**

Base materials to be welded:

Brazing steel, copper and nickel

Applications:

- · Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Repair shops
- Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

၁	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
						40,0		19,0		21,0	

Note: Cd - 20,0%

Mechanical properties, weld metal - typical:

moonamoar properties	o, word motar typican			
Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 480	≥ 30	595-630°C

Dia. mm.	Length mm.	Weight / package kg.
1,5	500	5
2,0	500	5

AWS A5.8: BAg-36

EN 1044: AG 104

Wire type: OAW Solid wire Welding positions:

→

Approvals:

Shielding gas: Oxy-acetylene

L-Ag 45 Sn is our cadmium free silver brazing rod for similar and dissimilar joining steel, stainless steel, nickel and nickel alloys, copper and copper alloys. L-Ag 45 Sn is mainly used for production brazing. Typical applications include household articles, cool aggregates, distilling plants, winepress equipment, dishes and jewellery. L-Ag 45 Sn has good flowing characteristics, is standard available as bare rod which is used in combination with silver solder brazing flux.

Base materials to be welded:

• Brazing steel, copper and nickel

Applications:

- · Pressure vessel & boiler industry
- · Construction works
- Repair shops
- · Food processing industry
- Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
ı	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
						45,0		27,0		25,0	

Note: Sn - 3,0%

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 400	≥ 14	640-680°C

Dia. mm.	Length mm.	Weight / package kg.
1,5	500	5
2,0	500	5

AWS A5.8: ~BAg-1a

EN 1044: AG 301

Wire type: OAW Solid wire Welding positions:

-

Approvals:

Shielding gas: Oxy-acetylene

L-Ag 50 Cd is our silver brazing rod with superb flowing characteristics. The high silver content in combination with the ratio between copper: zinc + cadmium ensures excellent resistance to corrosion in chlorine, sulphur and steam environments. Suitable for similar and dissimilar joining steel, stainless steel, grey and malleable cast iron, nickel and nickel alloys, copper and copper alloys, brass, bronzes, tungsten carbide, silver and gold. L-Ag 50 Cd is standard a bare rod which is used in combination with silver solder brazing flux. **CONTAINS CADMIUM!**

Base materials to be welded:

· Brazing steel, copper and nickel

Applications:

- · Shipyards/offshore
- Pressure vessel & boiler industry
- Construction works
- Repair shops
- Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
_	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

	The investment of the investme											
С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al	
						50.0		15.5		16.5		

Note: Cd - 18,0%

Mechanical properties, weld metal - typical:

Condition	Yield strength Rp 0,2 MPa	Tensile strength Rm MPa	Elongation A5 - %	Melting range
As welded	-	≥ 450	≥ 35	625-635°C

Packaging data:

Dia. mm.	Length mm.	Weight / package kg.
1,5	500	5
2,0	500	5

AWS A5.8: ~BAg-7

EN 1044: AG 103

Wire type: OAW Solid wire Welding positions:

-

Approvals:

Shielding gas: Oxy-acetylene

L-Ag 55 Sn is our cadmium free silver brazing rod for similar and dissimilar joining steel, stainless steel, nickel and nickel alloys, copper and copper alloys. Typical applications include food equipment where cadmium must be avoided, to minimize stress corrosion cracking of nickel and nickel alloys at low brazing temperatures, where color match with the base metal is required. L-Ag 55 Sn is standard available as bare rod which is used in combination with silver solder brazing flux. Fluxcoated rods are available on request (L-Ag 55 SnFC).

Base materials to be welded:

Brazing steel, copper and nickel

Applications:

- Pressure vessel & boiler industry
- · Construction works
- Repair shops
- · Food processing industry
- Office furniture industry

Equivalent product in alternative welding process:

SMAW	GMAW	FCAW	GTAW	SAW	Gas welding / brazing
-	-	-	-	-	-

Chemical composition, wt.% weld metal - typical:

С	Mn	Si	S	Р	Ni	Ag	Sn	Cu	Ti	Zn	Al
						55,0		21,0		22,0	

Note: Sn - 2,0%

Mechanical properties, weld metal - typical:

Condition	0,2% Yield strength MPa	Tensile strength MPa	Elongation Lo=5d - %	Melting range
As welded	-	≥ 500	≥ 11	630-660°C

Packaging data:

Dia. mm.	Length mm.	Weight / package kg.
1,5	500	5
2,0	500	5

HILCO Brazing Fluxes are suitable for use on copper, brass, mild steel and most other common materials. Special purpose fluxes are available for brazing aluminium, cast iron and silver brazing alloys. Silver brazing fluxes are not effective on aluminium, magnesium, titanium or their alloys.

The application field of HILCO Brazing Fluxes strongly depend on the melting points of the various brazing alloys and varies between 450-900°C. In this respect we supply a number of brazing fluxes each having their typical application. Use of the wrong flux or a poor application technique can have a negative effect on the quality of the joint.

HILCO Brazing Fluxes are available in powder for only. These powders can be made into pastes by stirring in water until the mixture has the consistency of thick cream. HILCO Brazing Fluxes can be applied by hot rodding i.e. dipping a warm rod into flux powder and the flux adhering to the rod is transferred to the joint area.

A molten brazing alloy will only wet and flow over a parent metal if both are substantially free of surface oxide. Simply removing surface oxide before brazing is not effective, since a new oxide layer is rapidly formed on heating. To achieve a oxide free surface it is necessary to:

- · Remove oxide as it is formed using a suitable brazing flux, or
- Prevent oxidation during brazing by heating in a protective atmosphere, or
- Use a self-fluxing brazing alloy (possible when copper-to-copper brazing only!)

Brazing Flux	Application	EN 1045	Temperature range	Packaging	To be used in combination with
Bronze flux	General purpose, brazing cast iron, steel, brass, bronze and copper	FH 21	750-1100°C	500 gr. jars	Bronze C, Bronze N, Tinbronzes, Phosphorbronzes
Aluminium flux	Brazing aluminium sheet and extruded shapes and corner joints	FH 11	550-800°C	500 gr. jars	AL Si 5, AL Si 12
Cast Iron flux	Oxy-acetylene welding and repairing cast iron	FH 21	750-1100°C	500 gr. jars	Cast iron rods
Silver solder flux (F-Flux)	Silver brazing, dissimilar joining copper to	FH 10	550-800°C	500 gr. jars	Silver brazing rods, Silver phosphorous rods
Y-flux	Similar and dissimilar joining copper to	FH 10	550-800°C	20 kilo drums	Silver brazing rods

Flux residue removal

We recommend to remove flux residues after brazing, due to the danger of corrosive attack when the flux hydrolyses on exposure to moist air. The method of removal depends on the classification of the brazing flux.

Classification	Removal of residues
FH10, FH11	Residues are corrosive and have to be removed by washing or pickling
FH21	Residues are non-corrosive and have to be removed mechanically or by pickling

HILCO tungsten electrodes are used for TIG welding and for plasma welding and cutting. In order to improve the service life and arc striking characteristics oxides are added to them during production.

Туре		Composition		Color	Application	Current
	w	Oxides (%)	Cont.	code		
W AWS A5.12: EWP	Bal.	-	≤0,2	Green	TIG welding aluminium, aluminium alloys	>
WT 20 AWS A5.12: EWTh-2	Bal.	1,8-2,2 Th O ₂	≤0,2	Red	TIG welding stainless steel, low alloyed steel, copper and copper alloys	=-
WT 40 -	Bal.	3,8-4,2 Th O ₂	≤0,2	Orange	TIG welding stainless steel, low alloyed steel, copper and copper alloys, higher current carrying capacity than WT20	=-
WC 20 AWS A5.12: EWCe-2	Bal.	1,8-2,2 Ce O ₂	≤0,2	Grey	Thorium free alternative to WT20	=-
WS 2 AWS A5.12: EWG	Bal.	Rare earths	≤0,2	Turquoise	Thorium free alternative to WT20	=-
WL 20 AWS A5.12: EWLa-1	Bal.	1,8-2,2 La ₂ O ₃	≤0,2	Blue	Thorium free alternative to WT20	=-
WZ 8 AWS A5.12: EWZr-1	Bal.	0,7-0,9 Zr O ₂	≤0,2	White	TIG welding aluminium and magnesium alloys, also for use in applications where thorium should be avoided	~

Туре		Standard length 175 mm. (other lengths upon request) Packaging 10 pieces per package								
	Ø 1,6 mm.	Ø 2,0 mm.	Ø 2,4 mm.	Ø 3,2 mm.	Ø 4,0 mm.					
W	•	•	•	•	•					
WT 20	•	•	•	•	•					
WT 40	•		•							
WC 20			•							
WS 2	•		•							
WL 20	•		•							
WZ 8			•	•						

Carbon gouging rods

Air carbon arc cutting (CAC-A) rods - cutting & gouging

Coating type: Copper coated Current:

Arc voltage: 35-55V - power source needs OCV ≥ 60V

Carbon gouging rods are copper-coated air carbon arc cutting rods made from a mixture of graphite and pure carbon. Typical applications can be found in every field of metalworking, in foundries, steel constructions, shipbuilding, repair & maintenance. Carbon gouging rods are used for weld edge preparations, back-gouging in multipass welding, removing unsatisfactory welds, bolt and wire ends, spatter removal, all kinds of cutting.

Base materials to be welded:

- Carbon, low-alloyed steels
- Stainless steels
- Aluminium
- Nickel allovs
- Cast iron
- Copper alloys Magnesium

All industries related to welding

Process description, recommendations for usage

Carbon gouging rods remove molten metal with a jet of air. The intense heat of an arc between the carbon-graphite electrode and a workpiece melts a portion of the metal, while simultaneously a jet of air is passed through the arc to blow away the molten metal. The process (Air carbon arc cutting - CAC-A) is used for cutting and gouging, and it can be done manually or mechanized. Carbon steel, stainless steel, copper alloys, cast irons, aluminium, magnesium and nickel alloys can all be cut with Carbon gouging rods. The process requires an electrode holder, cutting electrodes, a power source and an air supply. Manual electrode holders are similar to shielded metal arc electrode holders (stick electrode holders). The electrode is held in a rotatable head containing air orifices. A valve is provided to turn the air on and off. Carbon gouging rods are round, pointed and copper coated. They are intended to use at DC current.

Base material	Electrode	Current	Remarks
Carbon, low-alloyed steels	DC	= +	-
Stainless steels	DC	= +	-
Aluminium	DC	= +	Extend electrode no more than 10 cm.
Nickel alloys	DC	= -	-
Cast iron	DC	= -	At middle of electrode current range
	DC	= +	At maximum current only
Copper alloys	DC	= +	At maximum current only
Magnesium	DC	= +	Clean surface before welding

Packaging and welding data:

Dia.	Length	Current
mm.	mm.	Amps.
4,0	305	90-150
5,0	305	150-200
6,3	305	200-400
8,0	305	250-450
10,0	305	350-600

Accessories

Hilcoflex is our double insulated welding cable made from a special NBR compound rubber, which is highly resistant to abrasion, oil, grease, ozone and most industrial solvents. The orange colour improves the visibility of the cable, even in dark confined areas and reduces the number of accidents in your working environment. The inner sheath takes care of insulating the copper conductors and improves the flexibility of the welding cable. The number of wires inside the cable is higher in comparison to usual neoprene cables improving the duty cycle of the cable. Hilcoflex welding cable can also be used as ground cable in your welding process.

Mechanical Properties:

Tensile strength MPa	Working temperature	Electrical conductivity
> 16	-40 up to + 85°C	At 20°C 4,6x10 ¹² Ω

Packaging and welding data:

Cable	Length bundle	Weight /	Curren	Current carrying capacity / duty cycle - Amps					
Size mm ²	meters	bundle kg.	100%	85%	60%	30%			
25	100	34,0	180	195	230	330			
35	50	23,0	225	245	290	410			
50	50	30,3	285	310	370	520			
70	50	43,0	355	385	460	650			

Anti Spatter is our CFC free weld spatter release agent that is used as an anti-adhesion preparation in your welding process. Anti spatter is stick and MIG process compatible, non fuming.

Applications:

Anti Spatter is used on all metals in both SMAW and GMAW welding processes. Spray welding gun and workpieces before welding to prevent stoppages in your liner and to improve spatter-release. The film applied has an oily character, is non-toxic and can withstand the temperatures of normal operation. Anti Spatter has no negative effects to the weld, the welding process and the composition of the weld metal.

Directions for usage:

Hold the can upright and apply a thin, just visible, film from a distance of 30 cm to the workpiece. Please be aware that the can is pressurized, avoid usage at temperature > 50°C, store away from direct sunlight, do not puncture or increate the can even when empty, keep the can away from direct heat. Do not spray in open fire, flames or red-hot metal sheets. Use Anti Spatter in a well ventilated area.

Packaging data:

Content ml.	Weight	Pieces / carton
500	450 g.	12

Thermometer 314C

Thermometer 314C is our temperature gauge to be used during the welding process. This thermometer is held in its place by means of magnetic contact plates and is, thus, on suitable for usage on ferritic steel grades.

Properties:

1 10 portioo.		
Measuring system	Working temperature	Accuracy
Mechanical, no batteries required	+10 up to + 400°C	+/- 2%

Packaging data:

Per piece

Soapstone

Soapstone is our marking device to be used during the welding process. Soapstone marks all kinds of steel grades by means of chalking. The flat soapstone can be supplied with a steel refillable holder.

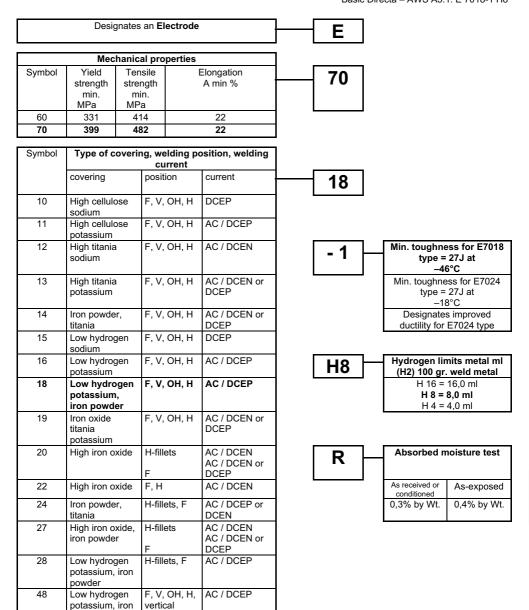
Packaging data:

Per gross = 144 pieces

Adaptor is our device to fit the environmental friendly B300 basket spools on MIG welding machines. The robust Adaptor secures the welding wire and spools during transportation to the welding gun. It guarantees problem-free usage during the welding process. Adaptor is also available of B200 basket spools.

Packaging data:

Per piece

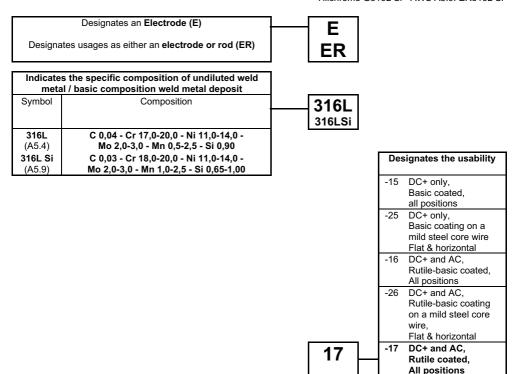

powder

down

Specification AWS A5.1

Specification for carbon steel electrodes for shielded metal arc welding

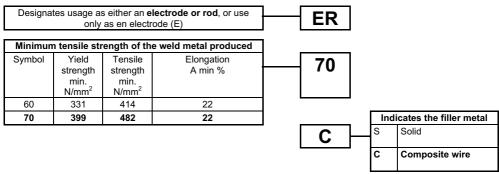
Basic Directa – AWS A5.1; E 7018-1 H8



Specification AWS A5.4 & A5.9

Specification for stainless steel electrodes for shielded metal arc welding Specification for bare stainless steel welding electrodes and rods

> Hilchrome 316R – AWS A5.4: E316L-17 Hilchrome G316L Si - AWS A5.9: ER316L Si



Specification AWS A5.18

Specification for carbon steel filler metal for gas shielded arc welding

K60 - AWS A5.18: ER 70 S 6

	С	hemical co	mpositi	on rec	uirement	for solic	d electro	odes a	nd rod	S		
С	Mn	Si	Р	S	Ni	Cr	Mo	V	Cu	Ti	Zr	Al
0,07	0,90-	0,40-0,70	0,025	0,03	5 *	*	*	*	0,50	0,05-	0,02-	0,05-
	1,40									0,12	0,12	0,15
0,06-	0,90-	0,45-0,75	0,025	0,03	5 *	*	*	*	0,50	-	-	-
0,15	1,40											
0,07-	1,00-	0,65-0,85	0,025	0,03	5 *	*	*	*	0,50	-	-	-
0,15	1,50											
0,07-	0,90-	0,30-0,60	0,025	0,03	5 *	*	*	*	0,50	-	-	0,50-
0,19	1,40											0,90
0,06-	1,40-	0,80-1,15	0,025	0,03	5 *	*	*	*	0,50	-	-	-
0,15	1,85											
0,07-	1,50-	0,50-0,80	0,025	0,03	5 *	*	*	*	0,50	-	-	-
0,15	2,00											
					Not s	pecified						
Ch	emical	compositio	n requi	remen	ts for con	posite (electroc	les (me	etal co	red wire	s)	
	Shield	ling gas	С		Mn	,	Si	S		Р	Cı	u max.
s requir												
-	ArCO ²	or CO ²	0,12	2	1,75	0,	90	0,0	3	0,03		0,50
	ArCO	or CO ²	0,12	2	1,75	0,	90	0,0	3	0,03		0,50
	As a	greed					Not spe	ecified				
ss requ	iremen	t										
ſ							Not spe	ecified				
	0,07 0,06- 0,15 0,07- 0,15 0,07- 0,19 0,06- 0,15 0,07- 0,15 Ch	C Mn 0,07 0,90- 1,40 0,06- 0,90- 0,15 1,40 0,07- 1,00- 0,15 1,50 0,07- 0,90- 0,19 1,40 0,06- 1,40- 0,15 1,85 0,07- 1,50- 0,15 2,00 Chemical Shield Frequirements ArCO Assess requirements	C Mn Si 0,07 0,90- 1,40 0,40-0,70 0,06- 0,15 1,40 0,45-0,75 0,07- 0,15 1,50 0,65-0,85 0,15 1,50 0,30-0,60 0,07- 0,19 1,40- 1,40- 0,06- 0,15 0,80-1,15 0,07- 0,07- 0,07- 0,15 1,50- 2,00 0,50-0,80	C Mn Si P 0,07 0,90- 1,40 0,40-0,70 0,025 1,40 0,05-0,85 0,025 0,15 1,40 0,65-0,85 0,025 0,15 1,50 0,07- 0,07- 0,90- 0,19 1,40 0,80-1,15 0,025 0,15 1,85 0,07- 0,15 1,85 0,07- 0,15 1,85 0,07- 0,15 2,00 0,50-0,80 0,025 Chemical composition requi Shielding gas C Crequirements ArCO ² or CO ² 0,11 As agreed ss requirement As agreed ss requirement As agreed ss requirement	C Mn Si P S 0,07 0,90- 1,40 0,40-0,70 0,025 0,03 0,06- 0,15 1,40 0,45-0,75 0,025 0,03 0,07- 0,15 1,50 0,025 0,03 0,07- 0,19 1,40 0,025 0,03 0,08- 0,19 1,40 0,025 0,03 0,05- 0,15 1,85 0,025 0,03 0,07- 0,15 1,50- 0,07- 1,50- 0,15 0,50-0,80 0,025 0,03 0,15 2,00 0,50-0,80 0,025 0,03 Chemical composition requirement S requirements ArCO ² or CO ² 0,12 ArCO ² or CO ² 0,12 As agreed ss requirement	C Mn Si P S Ni 0,07 0,90- 0,40-0,70 0,025 0,035 * 1,40 0,06- 0,90- 0,45-0,75 0,025 0,035 * 0,15 1,40 0,07- 1,00- 0,65-0,85 0,025 0,035 * 0,15 1,50 0,07- 0,90- 0,30-0,60 0,025 0,035 * 0,19 1,40 0,06- 1,40- 0,80-1,15 0,025 0,035 * 0,15 1,85 0,07- 1,50- 0,50-0,80 0,025 0,035 * 0,15 1,85 0,07- 1,50- 0,50-0,80 0,025 0,035 * 0,15 2,00 Not s Chemical composition requirements for com	C Mn Si P S Ni Cr 0,07 0,90- 1,40 0,40-0,70 0,025 0,035 * * 0,06- 0,15 1,40 0,45-0,75 0,025 0,035 * * 0,07- 0,15 1,50 0,65-0,85 0,025 0,035 * * 0,07- 0,15 1,50 0,030-0,60 0,025 0,035 * * 0,19 1,40 0,80-1,15 0,025 0,035 * * 0,15 1,50- 0,07- 0,15 0,50-0,80 0,025 0,035 * * 0,07- 0,15 2,00 0,50-0,80 0,025 0,035 * * Not specified Chemical composition requirements for composite Shielding gas C Mn S 3 requirements ArCO ² or CO ² 0,12 1,75 0, As agreed As agreed ss requirement	C Mn Si P S Ni Cr Mo 0,07 0,90- 1,40 0,40-0,70 0,025 0,035 * * * 0,06- 0,15 1,40 0,07- 0,15 1,40 0,025 0,035 * * * 0,07- 0,15 1,50 0,025 0,035 * * * 0,07- 0,15 1,50 0,025 0,035 * * * 0,07- 0,19 1,40 0,80-1,15 0,025 0,035 * * * 0,15 1,40 0,80-1,15 0,025 0,035 * * * 0,07- 0,15 1,50- 0,07- 0,15 0,50-0,80 0,025 0,035 * * * 0,07- 0,15 2,00 0,50-0,80 0,025 0,035 * * * Chemical composition requirements for composite electroc S requirements ArCO ² or CO ² 0,12 1,75 0,90 ArCO ² or CO ²	C Mn Si P S Ni Cr Mo V 0,07 0,90- 1,40 0,40-0,70 0,025 0,035 *	C Mn Si P S Ni Cr Mo V Cu 0,07 0,90- 1,40 0,40-0,70 0,025 0,035 * * * * 0,50 0,06- 0,15 1,40 0,045-0,75 0,025 0,035 * * * * 0,50 0,07- 0,15 1,50 0,65-0,85 0,025 0,035 * * * * 0,50 0,07- 0,15 1,50 0,30-0,60 0,025 0,035 * * * * 0,50 0,19 1,40 0,80-1,15 0,025 0,035 * * * * 0,50 0,19 1,40 0,80-1,15 0,025 0,035 * * * * 0,50 0,15 1,85 0,50 0,50-0,80 0,025 0,035 * * * * 0,50 0,07- 1,50- 0,50-0,80 0,025 0,035 * <td> 0,07</td> <td>C Mn Si P S Ni Cr Mo V Cu Ti Zr 0,07 0,90- 1,40 0,40-0,70 0,025 0,035 * * * 0,50 0,05- 0,12 0,02- 0,12 0,12 0,06- 0,15 1,40 0,06- 0,07- 1,00- 0,15 0,65-0,85 0,025 0,035 * * * * 0,50 - - 0,07- 0,15 1,50 0,65-0,85 0,025 0,035 * * * 0,50 - - 0,07- 0,15 1,50 0,30-0,60 0,025 0,035 * * * * 0,50 - - 0,19 1,40 0,80-1,15 0,025 0,035 * * * * 0,50 - - 0,15 1,50- 0,07- 0,15 0,80-1,15 0,025 0,035 * * * * 0,50 - - - 0,15 0,05 -</td>	0,07	C Mn Si P S Ni Cr Mo V Cu Ti Zr 0,07 0,90- 1,40 0,40-0,70 0,025 0,035 * * * 0,50 0,05- 0,12 0,02- 0,12 0,12 0,06- 0,15 1,40 0,06- 0,07- 1,00- 0,15 0,65-0,85 0,025 0,035 * * * * 0,50 - - 0,07- 0,15 1,50 0,65-0,85 0,025 0,035 * * * 0,50 - - 0,07- 0,15 1,50 0,30-0,60 0,025 0,035 * * * * 0,50 - - 0,19 1,40 0,80-1,15 0,025 0,035 * * * * 0,50 - - 0,15 1,50- 0,07- 0,15 0,80-1,15 0,025 0,035 * * * * 0,50 - - - 0,15 0,05 -

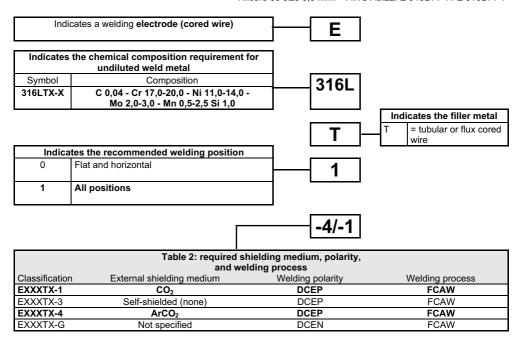
Specification AWS A5.20 Specification for carbon steel electrodes for fluxcored arc welding

Hilcord 40 - AWS A5.20: E71T-1 / E71T-12M

	Table 2: position of welding, shielding, polarity, application requirements								
AWS Classification	Position of welding	External shielding	Polarity	Application					
E70T-1	H and F	CO ₂	DCEP	М					
E70T-1M	H and F	ArCO ₂ mixture	DCEP	М					
E71T-1	H, F, VU, OH	CO ₂	DCEP	М					
E71T-1M	H, F, VU, OH	ArCO ₂ mixture	DCEP	М					
E70T-2	H and F	CO ₂	DCEP	S					
E70T-2M	H and F	ArCO ₂ mixture	DCEP	S					
E71T-2	H, F, VU, OH	CO ₂	DCEP	S					
E71T-2M	H, F, VU, OH	ArCO ₂ mixture	DCEP	S					
E70T-3	H and F	-	DCEP	S					
E70T-4	H and F	-	DCEP	М					
E70T-5	H and F	CO ₂	DCEP	М					
E70T-5M	H and F	ArCO ₂ mixture	DCEP	М					
E71T-5	H, F, VU, OH	CO ₂	DCEP or DCEN	М					
E71T-5M	H, F, VU, OH	ArCO ₂ mixture	DCEP or DCEN	М					
E70T-6	H and F	-	DCEP	М					
E70T-7	H and F	-	DCEP	М					
E71T-7	H, F, VU, OH	-	DCEP	М					
E70T-8	H and F	-	DCEP	М					
E71T-8	H, F, VU, OH	-	DCEP	М					
E70T-9	H and F	CO ₂	DCEP	М					
E70T-9M	H and F	ArCO ₂ mixture	DCEP	М					
E71T-9	H, F, VU, OH	CO ₂	DCEP	М					
E71T-9M	H, F, VU, OH	ArCO ₂ mixture	DCEP	М					
E70T-10	H and F	-	DCEP	S					
E70T-11	H and F	-	DCEP	М					
E71T-11	H, F, VU, OH	-	DCEP	М					
E70T-12	H and F	CO ₂	DCEP	М					
E70T-12M	H and F	ArCO ₂ mixture	DCEP	М					
E71T-12	H, F, VU, OH	CO ₂	DCEP	М					
E71T-12M	H, F, VU, OH	ArCO ₂ mixture	DCEP	М					
E61T-13	H, F, VU, OH	-	DCEP	S					
E71T-13	H, F, VU, OH	-	DCEP	S					
E71T-14	H, F, VU, OH	-	DCEP	S					
EX0T-G	H and F	Not specified	Not specified	М					
EX1T-G	H, F, VD or VU, OH	Not specified	Not specified	M					
EX0T-GS	H and F	Not specified	Not specified	S					
EX1T-GS	H, F, VD or VU, OH	Not specified	Not specified	S					

Notes:

Position of welding: H = horizontal position, F = flat, OH = overhead, VD = vertical downwards, VU = vertical


Application: M = single or multipass, S = single pass only

Specification AWS A5.22

Specification for stainless steel electrodes for flux cored arc welding

Hilcord 83 size 0,9 mm. - AWS A5.22: E 316LT1-4 / E 316LT1-1

Basic Directa - EN 499: E 42 5 B 42 H5

	lectrode, sy	mbol for	process		
				Symbol	Min. impact of 47J at (temp
	Min. yie	ld streng	jth	Z	No requiremen
Symbol	Re min. MPa	Rm mi MPa	n. Elongation A ₅ min %	Α	+ 20°C
35	355	440-57	70 22	0	0°C
38	380	470-60	00 20	2	- 20°C
42	420	500-64	10 20	3	- 30°C
46	460	530-68	30 20	4	- 40°C
50	500	560-72		5	- 50°C
			l .	6	- 60°C
Symbol	Che	mical Co	mposition		
,	Mn	Мо	Ni		
-	2,0	-	-	Symbol	Electrode cove
Мо	1,4	0,3-0,6	-	Α	Acid
MnMo	> 1,4-2,0	0,3-0,6	-	С	Cellulose
1Ni	1,4	-	0,6-1,2	R	Rutile
2Ni	1,4	-	1,8-2,6	RR	Rutile, thick coa
3Ni	1,4	-	> 2,6-3,8	RC	Rutile-cellulos
Mn1Ni	> 1,4-2,0	-	0,6-1,2	RA	Rutile-acid
1 NiMo	1,4	0,3-0,6	0,6-1,2	RB	Rutile-basic
Z	Other co	ompositio	ns, as agreed	В	Basic
Symbol	Recove	ry %	Type of current	Symbol	Welding positi
1	≤ 10	5	AC / DC	1	All positions
2	≤ 10		DC	2	All positions, exc vertical down
3	> 105 ≤	125	AC / DC	3	Flat and horizon vertical butt / fil weld
4	> 105 ≤	125	DC	4	Flat butt and fil weld
5	> 125 ≤	160	AC / DC	5	Vertical down as
6	> 125 ≤	160	DC		
7	> 16		AC / DC	Symbol	Max. diffusib hydrogen conte 100 gr. weld me
				H5	5 ml
8	> 16	0	DC		3 1111
8	> 16	0	DC	H10	10 ml

Classification EN 760

Fluxes for submerged arc welding

HW 530 - EN 760: S A AB 1 67 AC H5

				Symbol	Type of flux
Syml	bol for metl	hod of manufacture		MS	Manganese-silicate
F		Fused flux	A	CS	Calcium-silicate
Α	Ag	gglomerated flux		ZS	Zirconium-silicate
М		Mixed flux	AB	RS	Rutile-silicate
			<u> </u>	AR	Aluminate-rutile
•	Flu	x class		AB	Aluminate-basic
1		r sub-arc welding non low alloy steels	1	AS	Aluminate-silicate
2		joint welding and of stainless steels		AF	Aluminate-fluoride- basic
3	Fluxes ma	ninly for surfacing		FB	Fluoride-basic
				Z	Any other
Symbol	for metallu	urgical behaviour / flux			composition
class elemei Metallurgio	s 1 - burn-o nts Si and I cal S.	urgical behaviour / flux ut or pick-up of the Mn (in this sequence) Contribution from flux on all weld metal. %	67		
class	s 1 - burn-o nts Si and I cal S.	ut or pick-up of the Mn (in this sequence)	67		composition
class elemen Metallurgio ehaviour Surn-out	s 1 - burn-o nts Si and N cal S.	ut or pick-up of the Mn (in this sequence) Contribution from flux on all weld metal, % Over 0,7 Over 0,5 up to 0,7 Over 0,3 up to 0,5	67 AC	Т	rpe of current Alternating current suitability for AC generally also implies suitability
class element Metallurgion Burn-out Pick-up an ourn-out	s 1 - burn-o nts Si and N cal S.	ut or pick-up of the Mn (in this sequence) Contribution from flux on all weld metal, % Over 0,7 Over 0,5 up to 0,7 Over 0,3 up to 0,5 Over 0,1 up to 0,3		AC	rpe of current Alternating current suitability for AC generally also implies suitability for DC
class elemen Metallurgio behaviour Burn-out Pick-up an burn-out	s 1 - burn-o nts Si and N cal S. 1 2 3 4 and/or 5	ut or pick-up of the Mn (in this sequence) Contribution from flux on all weld metal, % Over 0,7 Over 0,5 up to 0,7 Over 0,3 up to 0,5 Over 0,1 up to 0,3 Oup to 0,1 Over 0,1 up to 0,3 Over 0,3 up to 0,5 Over 0,5 up to 0,7		AC DC	rpe of current Alternating current suitability for AC generally also implies suitability for DC
class element Metallurgion Burn-out Pick-up an ourn-out	s 1 - burn-o nts Si and N cal S. 1 2 3 4 and/or 5	ut or pick-up of the Mn (in this sequence) Contribution from flux on all weld metal, % Over 0,7 Over 0,5 up to 0,7 Over 0,3 up to 0,5 Over 0,1 up to 0,3 Oup to 0,1 Over 0,1 up to 0,3 Over 0,3 up to 0,5 Over 0,5 up to 0,7		AC DC	composition /pe of current Alternating current suitability for AC generally also implies suitability for DC Direct current
class elemei Metallurgio pehaviour	s 1 - burn-o nts Si and N cal S. 1 2 3 4 and/or 5	ut or pick-up of the Mn (in this sequence) Contribution from flux on all weld metal, % Over 0,7 Over 0,5 up to 0,7 Over 0,3 up to 0,5 Over 0,1 up to 0,3 Oup to 0,1 Over 0,1 up to 0,3 Over 0,3 up to 0,5 Over 0,5 up to 0,7	AC	AC DC Hydroger	composition /pe of current Alternating current suitability for AC generally also implies suitability for DC Direct current

Classification EN 756

Wire electrodes and wire-flux combinations for submerged arc welding of non alloy and fine grain steels

Combination H100 + HW 530: S 42 3 AB S2

AB

Aluminate-basic

				Symbol	Min. impact of av 47J at (temp.)
Symbol f		properties b	y multi-run	Z	No requirements
Symbol	Re min. MPa	Rm min. MPa	Elongation A ₅ min %	Α	+ 20°C
35	355	440-570	22	0	0°C
38	380	470-600	20	2	- 20°C
42	420	500-640	20	3	- 30°C
46	460	530-680	20	4	- 40°C
50	500	560-720	18	5	- 50°C
	5	•		6	- 60°C
				Symbol fe	or type of welding f
					ee also EN 760

			Chemical co	mposition	wire elect	trodes in %			
Symbol	С	Si	Mn	Р	S	Мо	Ni	Cr	Cu
S0			As agreed	upon and	not defined	in this class	sification	•	
S1	0,05-0,15	0,15	0,35-0,60	0,025	0,025	0,15	0,15	0,15	≤ 0,30
S2	0,07-0,15	0,15	0,80-1,30	0,025	0,025	0,15	0,15	0,15	≤ 0,30
S3	0,07-0,15	0,15	>1,30-1,75	0,025	0,025	0,15	0,15	0,15	≤ 0,30
S4	0,07-0,15	0,15	>1,75-2,25	0,025	0,025	0,15	0,15	0,15	≤ 0,30
S1 Si	0,07-0,15	0,15-0,40	0,35-0,60	0,025	0,025	0,15	0,15	0,15	≤ 0,30
S2 Si	0,07-0,15	0,15-0,40	0,80-1,30	0,025	0,025	0,15	0,15	0,15	≤ 0,30
S2 Si 2	0,07-0,15	0,40-0,60	0,80-1,30	0,025	0,025	0,15	0,15	0,15	≤ 0,30
S3 Si	0,07-0,15	0,15-0,40	>1,30-1,85	0,025	0,025	0,15	0,15	0,15	≤ 0,30
S4 Si	0,07-0,15	0,15-0,40	>1,85-2,25	0,025	0,025	0,15	0,15	0,15	≤ 0,30
S1 Mo	0,05-0,15	0,05-0,25	0,35-0,60	0,025	0,025	0,45-0,65	0,15	0,15	≤ 0,30
S2 Mo	0,07-0,15	0,05-0,25	0,80-1,30	0,025	0,025	0,45-0,65	0,15	0,15	≤ 0,30
S3 Mo	0,07-0,15	0,05-0,25	>1,30-1,75	0,025	0,025	0,45-0,65	0,15	0,15	≤ 0,30
S4 Mo	0,07-0,15	0,05-0,25	>1,75-2,25	0,025	0,025	0,45-0,65	0,15	0,15	≤ 0,30
S2 Ni 1	0,07-0,15	0,05-0,25	0,80-1,30	0,020	0,020	0,15	0,80-1,20	0,15	≤ 0,30
S2 Ni 1,5	0,07-0,15	0,05-0,25	0,80-1,30	0,020	0,020	0,15	>1,20-1,80	0,15	≤ 0,30
S2 Ni 2	0,07-0,15	0,05-0,25	0,80-1,30	0,020	0,020	0,15	>1,80-2,40	0,15	≤ 0,30
S2 Ni 3	0,07-0,15	0,05-0,25	0,80-1,30	0,020	0,020	0,15	>2,80-3,70	0,15	≤ 0,30
S2 Ni 1 Mo	0,07-0,15	0,05-0,25	0,80-1,30	0,020	0,020	0,45-0,65	0,80-1,20	0,20	≤ 0,30
S3 Ni 1,5	0,07-0,15	0,05-0,25	>1,30-1,70	0,020	0,020	0,15	>1,20-1,80	0,20	≤ 0,30
S3 Ni 1 Mo	0,07-0,15	0,05-0,25	>1,30-1,80	0,020	0,020	0,45-0,65	0,80-1,20	0,20	≤ 0,30
S3 Ni 1,5 Mo	0,07-0,15	0,05-0,25	1,20-1,80	0,020	0,020	0,30-0,50	1,20-1,80	0,20	≤ 0,30

Hilcord 52 - EN 758: T 46 2 M M 1 H5

	ular cored,	symbol for p	process	ı T			
					1	Symbol	Min. impact of avg. 47J at (temp.)
	Min. yie	ld strength				Z	No requirements
Symbol	Re min. MPa	Rm min. MPa	Elongation _ A ₅ min %	46]	Α	+ 20°C
35	355	440-570	22		1	0	0°C
38	380	470-600	20			2	- 20°C
42	420	500-640	20		1	3	- 30°C
42	420	500-640	20	2		3	- 30 C
46	460	530-680	20			4	- 40°C
50	500	560-720	18			5	- 50°C
						6	- 60°C
Symbol	Chei	mical Comp	osition				
	Mn	Мо	Ni	-]		
-	2,0	-	-	<u> </u>	1	Symbol	Electrode core
Мо	1,4	0,3-0,6	-			R	Rutile, slow freezing
MnMo	> 1,4-2,0	0,3-0,6	-	М		Р	Rutile, fast freezing
1Ni	1,4	1_	0,6-1,2		4	В	Basic
2Ni	1,4	†-	1,8-2,6			М	Metal powder
3Ni	1,4	İ_	> 2,6-3,8			V	Rutile or basic/fluorid
Mn1Ni	> 1,4-2,0	-	0,6-1,2			W*	Basic/fluoride, slow freezing
1NiMo	1,4	0,3-0,6	0,6-1,2			Y*	Basic/fluoride, fast
Z	Othor or	I ompositions,	as agreed			Z*	freezing Other types
	Other of	ompositions,	, us agreed				W, Y, Z do not require shielding gas
	1	Shielding g	ıas	М]	Symbol	Welding position
Symbol		Sillelullig g	,			1	
					4	+	
М	Mixed ga	ses in acc. M2 classific	with EN 439 ation		4	1	All positions
	Mixed ga - N Carbon die	ses in acc. M2 classific	with EN 439 ation (CO ₂) in acc.		1	2	All positions All positions, except vertical down
M	Mixed ga - N Carbon die with EN	ses in acc. M2 classific oxide gases N 439 C1 cla	with EN 439 ation (CO ₂) in acc. ssification	1	,]		All positions, except vertical down Flat and horizontal
M	Mixed ga - N Carbon die with EN	ses in acc. M2 classific oxide gases N 439 C1 cla	with EN 439 ation (CO ₂) in acc. ssification	1	,]	2	All positions, except vertical down
M	Mixed ga - N Carbon die with EN	ses in acc. M2 classific oxide gases N 439 C1 cla	with EN 439 ation (CO ₂) in acc. ssification	1	,]	3	All positions, except vertical down Flat and horizontal vertical butt / fillet we Flat butt and fillet wel
M	Mixed ga - N Carbon die with EN	ses in acc. M2 classific oxide gases N 439 C1 cla	with EN 439 ation (CO ₂) in acc. ssification	1]	3 4	All positions, except vertical down Flat and horizontal vertical butt / fillet we Flat butt and fillet wel
M	Mixed ga - N Carbon die with EN	ses in acc. M2 classific oxide gases N 439 C1 cla	with EN 439 ation (CO ₂) in acc. ssification	1 H5	·]	3 4	All positions, except vertical down Flat and horizontal vertical butt / fillet we Flat butt and fillet we Vertical down and
M	Mixed ga - N Carbon die with EN	ses in acc. M2 classific oxide gases N 439 C1 cla	with EN 439 ation (CO ₂) in acc. ssification	-	']]	2 3 4 5	All positions, except vertical down Flat and horizontal vertical butt / fillet we Flat butt and fillet we Vertical down and according to symbol 3 Max. diffusible hydrogen content
M	Mixed ga - N Carbon die with EN	ses in acc. M2 classific oxide gases N 439 C1 cla	with EN 439 ation (CO ₂) in acc. ssification	-]]	2 3 4 5	All positions, except vertical down Flat and horizontal vertical butt / fillet we Flat butt and fillet we Vertical down and according to symbol 3 Max. diffusible hydrogen content 100 gr. weld metal

				AWS S	pecification	FN Cla	ssification
Page	Process	Group	Productname	Spec	peemeation	Class	331110411011
	SMAW	Unalloyed	Red Extra		E 6013		E 42 0 RC 11
	SMAW	Unalloyed	Red		E 6013		E 42 0 RC 11
	SMAW	Unalloyed	Brown		E 6012		E 42 0 RC 11
	SMAW	Unalloyed	Pipeweld 6010		E 6010		E 38 3 C 21
	SMAW	Unalloyed	Performa		E 6013		E 42 0 RC 11
	SMAW	Unalloyed	Velora		E 6013		E 42 0 RR 12
21	SMAW	Unalloyed	Velveta		E 6013		E 42 0 RR 32
	SMAW	Unalloyed	Basic 55		E 7016		E 42 2 RB 12 H10
	SMAW	Unalloyed	Basic		E 7018		E 42 4 B 32 H5
	SMAW	Unalloyed	Basic Super		E 7018-1		E 46 4 B 32 H5
	SMAW	Unalloyed	Basic Ouper Basic Directa		E 7018-1		E 42 5 B 42 H5
	SMAW	Unalloyed	Regina 140		E 7024		E 42 0 RR 53
27	SMAW	Unalloyed	Regina 150		E 7024-1		E 42 2 RA 53
	SMAW	Unalloyed	Regina 160		E 7024		E 42 0 RR 53
	SMAW	Unalloyed	Basic 160		E 7028		E 42 2 RB 53
	SMAW	Unalloyed	Regina 180		E 7024		E 42 0 RR 73
	SMAW	Unalloyed	Pipeweld 6010		E 6010		E 38 3 C 21
	SMAW	Unalloyed	Pipeweld 8010		E 8010-P1		E 46 3 C 25
		Unalloyed	SG 1		ER 70S-3		G 42 2 M G2 Si 1
34	GMAW	Unalloyed	SG 1A Superflow		ER 70S-3		G 42 2 M G2 Ti
	GMAW	Unalloyed	SG 2		ER 70S-6		G 42 2 C G3 Si 1
55	CIVIAVV	Orialioyed	<u>50 2</u>	A3.10	LIX 705-0	440	G 42 4 M G3 Si 1
36	GMAW	Unalloyed	K 60	A5 18	ER 70S-6	440	G 42 2 C G3 Si 1
00	OIVII VVV	Onanoyou	1100	710.10	2117000	110	G 46 2 M G3 Si 1
37	GMAW	Unalloyed	SG 3	A5.18	ER 70S-6	440	G 46 2 C G4 Si 1
							G 46 4 M G4 Si 1
38	FCAW	Unalloyed	Hilcord 40	A5.20	E 71T-1	758	T 46 3 P M 1 H5
					E 71T-12 M		
39	FCAW	Unalloyed	Hilcord 40C	A5.20	E 71T-1	758	T 46 2 P C 1 H5
40	FCAW	Unalloyed	Hilcord 41	A5.20	E 71T-1 M	758	T 42 2 P M 1 H5
41	FCAW	Unalloyed	Hilcord 41C	A5.20	E 71T-1	758	T 42 2 P C 1 H5
42	FCAW	Unalloyed	Hilcord 2040	A5.20	E 71T-GS	758	T 42 A Z N 2
43	FCAW	Unalloyed	Hilcord 2048	A5.20	E 71T-8	758	T 42 2 Z N 1
44	FCAW	Unalloyed	Hilcord 51	A5.20	E 70T-5	758	T 42 4 B C 3 H5
					E 70T-5 M		T 42 4 B M 3 H5
45	FCAW	Unalloyed	Hilcord 51.71	A5.20		758	T 42 4 B C 1 H5
					E 71T-5 M		T 42 5 B M 1 H5
	FCAW	Unalloyed	Hilcord 50		E 70C-6 M		T 42 3 M M 2 H5
	FCAW	Unalloyed	Hilcord 52		E 70C-6 M		T 46 2 M M 1 H5
	FCAW	Unalloyed	Hilcord 54		E 70C-6 M		T 46 4 M M 1 H5
49	GTAW	Unalloyed	Fer SG 1		ER 70S-3		W 42 2 W 2 Si 1
50	GTAW	Unalloyed	Fer SG 1A		ER 70S-2		W 42 2 W 2 Ti
51	GTAW	Unalloyed	Fer SG 2		ER 70S-6	1668	W 46 2 W 3 Si 1
52	GTAW	Unalloyed	Fer SG 3		ER 70S-6		
53	Gas welding	Unalloyed	Fer G 1	A5.2		12536	
54	Gas welding	Unalloyed	Fer G 2	A5.2		12536	
	Gas welding	Unalloyed	Fer G 3		R 60-G		
	Gas welding	Unalloyed	Fer G 4		R 60-G	12536	O IV
57	SAW	Unalloyed	<u>H 60</u>		EL 12	756	S 1
58	SAW	Unalloyed	<u>H 100</u>	A5.17	EM 12	756	S 2

				AWS Specification	EN Classification
Page	Process	Group	Productname	Spec	Class
	SAW	Unalloyed	<u>H 100Si</u>	A5.17 EM 12K	756 S2 Si
	SAW	Unalloyed	Hilcord 100	A5.18 EC 1	756 S 0
	SAW	Unalloyed	<u>HW 150</u>		760 S F MS 1 67 AC
62	SAW	Unalloyed	<u>HW 155</u>		760 S F MS 1 67 AC
63	SAW	Unalloyed	HW 430		760 S A AR 187 AC
64	SAW	Unalloyed	HW 450		760 S A MS 1 99 AC
65	SAW	Unalloyed	HW 530		760 S A AB 1 67 AC H5
66	SAW	Unalloyed	HW 400		760 S A AR 3 CrMo AC
67	SMAW	Cutting	Cutil		
68	CAC-A	Cutting	Carbon gouging rods		
72	SMAW	Low alloyed	<u>B 12Mo</u>	A5.5 E 7018-A1	1599 E Mo 32 B H5
73	SMAW	Low alloyed	B 19CrMo	A5.5 E 8018-B2	1599 E CrMo 1 B 42 H5
74	SMAW	Low alloyed	B 20CrMo	A5.5 E 9018-B3	1599 E CrMo 2 B 42 H5
75	SMAW	Low alloyed	Basic 70	A5.5 E 8018-C3	499 E 46 6 1Ni B 32 H5
76	GMAW	Low alloyed	SG Cor-Ten	A5.28 ER 80S-G	440 G 42 2 C G 0
					G 46 2 M G 0
77	GMAW	Low alloyed	K 80	A5.28 ER 110S-G	
	GMAW	Low alloyed	SG Mo	A5.28 ER 80S-D2	440 G 46 2 M G 2 Mo
	GMAW	Low alloyed	SG Mo	A5.28 ER 80S-D2	12070 G MoSi
79	GMAW	Low alloyed	SG CrMo1	A5.28 ER 80S-B2	12070 G CrMo 1 Si
80	GMAW	Low alloyed	SG CrMo2	A5.28 ER 90S-B3	12070 G CrMo 2 Si
81	GMAW	Low alloyed	SG Ni1	A5.28 ER 80S-Ni1	440 G 46 6 M G3 Ni 1
	GMAW	Low alloyed	SG Ni2,5	A5.28 ER 80S-Ni2	440 G 46 6 M G2 Ni 2
83	FCAW	Low alloyed	Hilcord Cor-Ten	A5.29 E 70T5-G	758 T 42 4 1Ni B H5
	FCAW	Low alloyed	Hilcord 59M	A5.28 E 110C-G	12535 T 69 4 Mn2NiCrMo MM 2
85	FCAW	Low alloyed	Hilcord 60M	A5.28 E 80C-G	758 T 46 2 Mo M M 2 H5
	FCAW	Low alloyed	Hilcord 60M	A5.28 E 80C-G	12071 T Mo M M 2 H5
	FCAW		Hilcord 61M	A5.28 E 80C-G	12071 T CrMo 1 M M 2 H5
	FCAW	Low alloyed	Hilcord 62M	A5.28 E 90C-G	12071 T CrMo 2 M M 2 H5
	FCAW	Low alloyed	Hilcord 43	A5.29 E 81T-1 Ni1	758 T 50 5 1Ni P M 1 H5
	FCAW	Low alloyed	Hilcord 44	A5.29 E 81T-1 Ni1	758 T 50 5 1Ni P M 1 H5
	GTAW	Low alloyed	Fer Cor-Ten	A5.28 ER 80S-G	1668 W 46 2 W 0
	GTAW	Low alloyed	K 80 (TIG)	A5.28 ER 110S-G	
	GTAW	Low alloyed	Fer SG Mo	A5.28 ER 70S-A1	1668 W 46 2 W 2 Mo
	GTAW	Low alloyed	Fer SG Mo	A5.28 ER 70S-A1	12070 W MoSi
93	GTAW	Low alloyed	Fer SG CrMo1	A5.28 ER 80S-B2	12070 W CrMo 1 Si
	GTAW		Fer SG CrMo2	A5.28 ER 90S-B3	12070 W CrMo 2 Si
	GTAW	Low alloyed	Fer SG CrMo5	A5.28 ER 80S-B6	12070 W CrMo 5 Si
	GTAW	Low alloyed	Fer SG CrMo9	A5.28 ER 80S-B8	12070 W CrMo 9 Si
	GTAW	Low alloyed	Fer SG Ni1	A5.28 ER 80S-Ni1	1668 W 46 6 W 3 Ni 1
	GTAW	Low alloyed	Fer SG Ni2,5	A5.28 ER 80S-Ni2	1668 W 46 6 W 2 Ni 2
	Gas welding	Low alloyed	Fer G 4	A5.2 R 60-G	12536 O IV
	SAW	Low alloyed	<u>H 100</u>	A5.17 EM 12	756 S 2
	SAW	Low alloyed	<u>H 150</u>		756 S 3
	SAW	Low alloyed	<u>H 150Si</u>	A5.17 EH 12K	756 S 3 Si
	SAW	Low alloyed	<u>H 150Si</u>	A5.17 EM 12K	756 S 3 Si
	SAW	Low alloyed	H 200	A5.17 EH 14	756 S 4
104	SAW	Low alloyed	Cor-Ten	A5.23 EG	756 S 0
105	SAW	Low alloyed	H 150NiCrMo1	A5.23 EG	756 S 0

Per page

				AWS Specification	EN Classification
Page	Process	Group	Productname	Spec	Class
	SAW	Low alloyed	H 100Mo	A5.23 EA 2	756 S 2 Mo
106	SAW	Low alloyed	<u>H 100Mo</u>	A5.23 EA 2	12070 S Mo
	SAW	Low alloyed	H 100CrMo1	A5.23 EB 2	12070 S CrMo 1
108	SAW	Low alloyed	H 60CrMo2	A5.23 EB 3	12070 S CrMo 2
109	SAW	Low alloyed	<u>H 100Ni1</u>	A5.23 E Ni 1	756 S 2 Ni 1
110	SAW	Low alloyed	H 100Ni2	A5.23 E Ni 2	756 S 2 Ni 2
111	SAW	Low alloyed	HW 530		760 S A AB 1 67 AC H5
112,113	SAW	Low alloyed	HW 580		760 S A FB 1 55 AC H5
122	SMAW	Stainless	Hilchrome 307R	A5.4 E 307-16	1600 E 18 8 Mn R 12
123	SMAW	Stainless	Hilchrome 309R	A5.4 E 309L-17	1600 E 23 12 L R 32
124	SMAW	Stainless	Hilchrome 309MoR	A5.4 E 309MoL-17	1600 E 23 12 2 L R 32
125	SMAW	Stainless	Hilchrome 312R	A5.4 E 312-17	1600 E 29 9 R 32
126	SMAW	Stainless	Hilchrome 308R	A5.4 E 308L-17	1600 E 19 9 L R 32
	SMAW	Stainless	Hilchrome 347R	A5.4 E 347-17	1600 E 19 9 Nb R 32
128	SMAW	Stainless	Hilchrome 316R	A5.4 E 316L-17	1600 E 19 12 3 L R 12
129	SMAW	Stainless	Hilchrome 316R-V	A5.4 E 316L-17	1600 E 19 12 3 L R 12
130	SMAW	Stainless	Hilchrome 318R	A5.4 E 318-17	1600 E 19 12 3 Nb R 32
131	SMAW	Stainless	Hilchrome 310R	A5.4 E 310-16	1600 E 25 20 R 12
	SMAW	Stainless	Hilchrome 2209	A5.4 E 2209-17	1600 E 22 9 3 L R 22
	SMAW	Stainless	Hilchrome 600	A5.11 E NiCrFe-3	D1736 EL-NiCr15FeMn
134	SMAW	Stainless	Hilchrome 625	A5.11 E NiCrMo-3	D1736 EL-NiCr20Mo9Nb
	SMAW	Stainless	NiCu7	A5.11 E NiCu-7	D1736 EL-NiCu30Mn
	GMAW	Stainless	Hilchrome G307	A5.9 ER 307	12072 G 18 8 Mn
137	GMAW	Stainless	Hilchrome G309L Si	A5.9 ER 309LSi	12072 G 23 12 L Si
	GMAW	Stainless	Hilchrome G312	A5.9 ER 312	12072 G 29 9
	GMAW	Stainless	Hilchrome G308L Si	A5.9 ER 308LSi	12072 G 19 9 L Si
	GMAW	Stainless	Hilchrome G316L Si	A5.9 ER 316LSi	12072 G 19 12 3 L Si
	GMAW	Stainless	Hilchrome G2209	A5.9 ER 2209	12072 G 22 9 3 L
	GMAW	Stainless	Hilchrome G600	A5.14 ER NiCr-3	D1736 MSG-NiCr20Nb
	GMAW	Stainless	Hilchrome G625	A5.14 ER NiCrMo-3	D1736 MSG-NiCr21Mo9Nb
144		Stainless	G NiCu7	A5.14 ER NiCu-7	D1736 MSG-NiCu30MnTi
	FCAW	Stainless	Hilcord 82	A5.22 E 307T0-G	12073 T 18 8 Mn R M 3
	FCAW	Stainless	Hilcord 85	A5.22 E 309LT 1-4	12073 T 23 12 LPM 1
	FCAW	Stainless	Hilcord 85	A5.22 E 309LT 0-4	12073 T 23 12 LRM 3
	FCAW	Stainless	Hilcord 85	A5.22 E 309LT 1-1	12073 T 23 12 LPC 1
	FCAW	Stainless	Hilcord 85	A5.22 E 309LT 0-1	12073 T 23 12 LRC 3
	FCAW	Stainless	Hilcord 85Mo	A5.22 E 309MoLT 1-4	12073 T 23 12 2 LPM 1
	FCAW	Stainless	Hilcord 85Mo	A5.22 E 309MoLT 0-4	12073 T 23 12 2 LRM 3
	FCAW	Stainless	Hilcord 85Mo	A5.22 E 309MoLT 1-1	12073 T 23 12 2 LPC 1
	FCAW	Stainless	Hilcord 85Mo	A5.22 E 309MoLT 0-1	12073 T 23 12 2 LRC 3
	FCAW	Stainless	Hilcord 81	A5.22 E 308LT 1-4	12073 T 19 9 LPM 1
	FCAW	Stainless	Hilcord 81	A5.22 E 308LT 0-4	12073 T 19 9 LRM 3
	FCAW	Stainless	Hilcord 81	A5.22 E 308LT 1-1	12073 T 19 9 LPC 1
	FCAW	Stainless	Hilcord 81	A5.22 E 308LT 0-1	12073 T 19 9 LRC 3
	FCAW	Stainless	Hilcord 83	A5.22 E 316LT 1-4	12073 T 19 12 3 LPM 1
	FCAW	Stainless	Hilcord 83	A5.22 E 316LT 0-4	12073 T 19 12 3 LRM 3
149	FCAW	Stainless	Hilcord 83	A5.22 E 316LT 1-1	12073 T 19 12 3 LPC 1
149	FCAW	Stainless	Hilcord 83	A5.22 E 316LT 0-1	12073 T 19 12 3 LRC 3

				AWS S	Specification	EN Cla	assification
Page	Process	Group	Productname	Spec	•	Class	
	FCAW	Stainless	Hilcord 83LT-1		E 316LT 1-4	12073	T 19 12 3 LPM 1
	FCAW	Stainless	Hilcord 83LT-1		E 316LT 1-1		T 19 12 3 LPC 1
	GTAW	Stainless	Hilchrome W307		ER 307		W 18 8 Mn
	GTAW	Stainless	Hilchrome W309L		ER 309L		W 23 12 L
	GTAW	Stainless	Hilchrome W309L Si		ER 309LSi		W 23 12 L Si
	GTAW	Stainless	Hilchrome W309LMo		ER 309LMo		W 23 12 2 L Si
155	GTAW	Stainless	Hilchrome W312		ER 312		W 29 9
	GTAW	Stainless	Hilchrome W308L Si		ER 308LSi		W 19 9 L Si
157	GTAW	Stainless	Hilchrome W347 Si		ER 347Si		W 19 9 Nb Si
	GTAW	Stainless	Hilchrome W316L Si	A5.9	ER 316LSi	12072	W 19 12 3 L Si
	GTAW	Stainless	Hilchrome W318 Si	A5.9	ER 318Si	12072	W 19 12 3 Nb Si
160	GTAW	Stainless	Hilchrome W2209	A5.9	ER 2209	12072	W 22 9 3 L
161	GTAW	Stainless	Hilchrome W600	A5.14	ER NiCr-3	D1736	WSG-NiCr20Nb
162	GTAW	Stainless	Hilchrome W625	A5.14	ER NiCrMo-3	D1736	WSG-NiCr21Mo9Nb
163	GTAW	Stainless	W NiCu7		ER NiCu-7	D1736	WSG-NiCu30MnTi
164	SAW	Stainless	Hilchrome S307	A5.9	ER 307	12072	S 18 8 Mn
165	SAW	Stainless	Hilchrome S309L	A5.9	ER 309L	12072	S 23 12 L
166	SAW	Stainless	Hilchrome S308L	A5.9	ER 308L	12072	S 19 9 L
167	SAW	Stainless	Hilchrome S316L	A5.9	ER 316L	12072	S 19 12 3 L
168	SAW	Stainless	Hilchrome S2209	A5.9	ER 2209	12072	S 22 9 3 L N
169	SAW	Stainless	HW 100	-	-	760	S A AB 2 78 9Cr AC
170	SAW	Stainless	HW 120	-	-	760	S A FB 2 53 AC
176	SMAW	Repair & M.	Red Extra	A5.1	E 6013	499	E 42 0 RC 11
177	SMAW	Repair & M.	Performa	A5.1	E 6013	499	E 42 0 RC 11
178	SMAW	Repair & M.	Basic 55	A5.1	E 7016	499	E 42 2 RB 12 H10
179	SMAW	Repair & M.	Basic	A5.1	E 7018	499	E 42 4 B 32 H5
180	SMAW	Repair & M.	B 19 CrMo	A5.5	E 8018-B2	1599	E CrMo 1 B 42 H5
181	SMAW	Repair & M.	Hilchrome 307R	A5.4	E 307-16	1600	E 18 8 Mn R 12
182	SMAW	Repair & M.	Hilchrome 312R	A5.4	E 312-17	1600	E 29 9 R 32
183	SMAW	Repair & M.	Hilchrome 600	A5.11	E NiCrFe-3	D1736	EL-NiCr15FeMn
184	SMAW	Repair & M.	Hilchrome 600S	A5.11	E NiCrFe-3	-	-
185	SMAW	Repair & M.	Hardmelt 350	-	-	D8555	E 1-UM-350
186	SMAW	Repair & M.	Hardmelt 600	-	-	D8555	E 6-UM-60-GP
187	SMAW	Repair & M.	Hardmelt 620	A5.13	E Fe-5B	D8555	E 4-UM-60-ST
	SMAW	Repair & M.	Hardmelt 638	-	-		E 10-UM-60-GR
	SMAW	Repair & M.	<u>Sugarhard</u>	-	-		E 10-UM-60-GR
	SMAW	Repair & M.	Hardmelt 643	-	-		E 10-UM-65-GR
191	SMAW	Repair & M.	Hardmelt 645	-			E 10-UM-65-GR
	SMAW	Repair & M.	<u>Manganil</u>		E FeMn-B		E 7-UM-200-KP
	SMAW	Repair & M.	Pure Nickel		E Ni-Cl		E Ni BG 22
	SMAW	Repair & M.	Nickel Iron		E Ni Fe-Cl		E Ni Fe BG 22
	SMAW	Repair & M.	Hilcostel 6E		E CoCr-A		E 20-UM-40-CTZ
	SMAW	Repair & M.	Hilcostel 12E		E CoCr-B	D8555	E 20-UM-50-CSTZ
	SMAW	Repair & M.	Aluminil Si5		E 4043		EL-Al Si 5
	SMAW	Repair & M.	Aluminil Si12		E 4047	D1732	
	SMAW	Repair & M.	<u>Bronsil</u>		E CuSn-C		EL-CuSn 7
	SMAW	Repair & M.	<u>Cuni</u>	A5.6	E CuNi	D1733	EL-CuNi 30 Mn
201	SMAW	Repair & M.	Cutil		-		-
202	CAC-A	Repair & M.	Carbon gouging rods	-	-	-	-

				AWS Specification	on EN Classification
Page	Process	Group	Productname	Spec	Class
	GMAW	Repair & M.	SG 2	A5.18 ER 70S-6	440 G 42 2 C G3 Si 1
200	Civir (VV	rtopaii a ivi.	002	7.0.10 E117000	G 42 4 M G3 Si 1
204	SMAW	Repair & M.	SG CrMo1	A5.28 ER 80S-B2	
	SMAW	Repair & M.	Hilchrome G307	A5.9 ER 307	12072 G 18 8 Mn
	SMAW	Repair & M.	Hilchrome G312	A5.9 ER 312	12072 G 29 9
	SMAW	Repair & M.	Hilchrome G600	A5.14 ER NiCr-3	
	SMAW	Repair & M.	H-350		D8555 MSG 2-GZ-400
	SMAW	Repair & M.	H-600		D8555 MSG 6-GZ-60-S
	SMAW	Repair & M.	Tinbronze 94-6	A5.7 ER CuSn-	
	SMAW	Repair & M.	Albronze 8	A5.7 ER CuAl-A	
	FCAW	Repair & M.	Hilcord 51	A5.20 E 70T-5	758 T 42 4 B C 3 H5
	. 0,	. topa a	<u>, , , , , , , , , , , , , , , , , , , </u>	E 70T-5 M	
213	FCAW	Repair & M.	Hilcord 61M	A5.28 E 80C-G	12071 T CrMo 1 M M 2 H5
214	FCAW	Repair & M.	Hilcord 82	A5.22 E 307T0-0	
	FCAW	Repair & M.	Hilcord 600		D8555 MF 6-60
	GTAW	Repair & M.	Fer SG 2	A5.18 ER 70S-6	1668 W 46 2 W 3 Si 1
	GTAW	Repair & M.	Fer SG CrMo1	A5.28 ER 80S-B2	
	GTAW	Repair & M.	Fer SG CrMo5	A5.28 ER 80S-B6	
	GTAW	Repair & M.	Hilchrome W307	A5.9 ER 307	12072 W 18 8 Mn
220	GTAW	Repair & M.	Hilchrome W312	A5.9 ER 312	12072 W 29 9
221	GTAW	Repair & M.	Hilchrome W600	A5.14 ER NiCr-3	
222	GTAW	Repair & M.	Hilcostel 6T	A5.13 R CoCr-A	D8555 WSG 20-GO-40-CTZ
222	Gas welding	Repair & M.	Hilcostel 6T	A5.13 R CoCr-A	D8555 G 20-GO-40-CTZ
	GTAW	Repair & M.	Hilcostel 12T	A5.13 R CoCr-B	D8555 WSG 20-GO-50-CSTZ
223	Gas welding	Repair & M.	Hilcostel 12T	A5.13 R CoCr-B	D8555 G 20-GO-50-CSTZ
224	GTAW	Repair & M.	Cunifer 70-30	A5.7 ER CuNi	D1733 WSG CuNi30Fe
225	Gas welding	Repair & M.	Fluxcored AL 99,5	A5.10 ER 1100	D1732 G-Al 99,5
226	Gas welding	Repair & M.	Fluxcored Al Si5	A5.10 ER 4043	D1732 G-Al Si 5
227	Gas welding	Repair & M.	Bronze C	A5.8 RB CuZn-	A 1044 CU 304
228	Gas welding	Repair & M.	Bronze F	A5.8 RB CuZn-	A 1044 CU 301
229		Repair & M.	Bronze N	A5.8 RB CuZn-l	D 1044 CU 305
230	Gas welding	Repair & M.	Phosphorbr. 93-7	A5.8 B CuP-2	1044 CP 202
231	SAW	Repair & M.	<u>HW 430</u>		760 S A AR 1 87 AC
232	SAW	Repair & M.	<u>HW 100</u>		760 S A AB 2 78 9Cr AC
	SAW	Repair & M.	<u>HW 400</u>		760 S A AR 3 CrMo AC
239	SMAW	Aluminium	Aluminil 99,8	A5.3 E 1100	D1732 EL-Al 99,8
	SMAW	Aluminium	Aluminil Si5	A5.3 E 4043	D1732 EL-Al Si 5
241	SMAW	Aluminium	Aluminil Si12	A5.3 E 4047	D1732 EL-Al Si 12
242	SMAW	Aluminium	Aluminil Mn	A5.3 E 3003	D1732 EL-Al Mn 1
	GMAW	Aluminium	<u>AL 99,5</u>	A5.10 ER 1100	D1732 MSG-Al 99,5
	GMAW	Aluminium	AL Si5	A5.10 ER 4043	D1732 MSG-Al Si 5
	GMAW	Aluminium	AL Si12	A5.10 ER 4047	D1732 MSG-Al Si 12
	GMAW	Aluminium	AL Mg3	A5.10 ER 5754	D1732 MSG-Al Mg 3
247	GMAW	Aluminium	AL Mg4,5 Mn	A5.10 ER 5183	D1732 MSG-Al Mg 4,5 Mn
	GMAW	Aluminium	AL Mg5	A5.10 ER 5356	D1732 MSG-Al Mg 5
		Aluminium	AL 99,5 (TIG)	A5.10 ER 1100	D1732 WSG-AI 99,5
	GTAW	Aluminium	AL Si5 (TIG)	A5.10 ER 4043	D1732 WSG-Al Si 5
251	GTAW	Aluminium	AL Si12 (TIG)	A5.10 ER 4047	D1732 WSG-Al Si 12
252	GTAW	Aluminium	AL Mg3 (TIG)	A5.10 ER 5754	D1732 WSG-Al Mg 3
253	GTAW	Aluminium	AL Mg4,5 Mn (TIG)	A5.10 ER 5183	D1732 WSG-Al Mg 4,5 Mn

				AWS Specification		EN Classification	
Page	Process	Group	Productname	Spec		Class	
	GTAW	Aluminium	AL Mg5 (TIG)		ER 5356	D1732	WSG-Al Mg 5
	Gas welding	Aluminium	AL Si5 (OXY)		ER 4043		G-Al Si 5
	Gas welding	Aluminium	AL Si12 (OXY)		ER 4047	D1732	G-Al Si 12
	Gas welding	Aluminium	Fluxcored AL 99,5		ER 1100		G-Al 99,5
	Gas welding	Aluminium	Fluxcored AL Si5		ER 4043		G-Al Si 5
	SMAW	Non ferrous	Bronsil		E CuSn-C		EL-CUSn 7
	SMAW	Non ferrous	Cuni		E CuNi		EL-CuNi 30 Mn
	GMAW	Non ferrous	Tinbronze 94-6		ER CuSn-A		MSG-CuSn 6
	GMAW	Non ferrous	Albronze 8		ER CuAl-A1		MSG-CuAl 8
	GMAW	Non ferrous	Albronze 35		ER CuNiAl		MSG-CuAl 8 Ni 6
	GMAW	Non ferrous	Albronze 300	A5.7	ER CuMnNiAl		MSG-CuMn 13 Al 7
269	GMAW	Non ferrous	Cusi 3	A5.7	ER CuSi-A		MSG-CuSi 3
270	GTAW	Non ferrous	Tinbronze 94-6 (TIG)	A5.7	ER CuSn-A		WSG-CuSn 6
271	GTAW	Non ferrous	Cunifer 70-30	A5.7	ER CuNi		WSG-CuNi 30 Fe
272	GTAW	Non ferrous	Cunifer 90-10	A5.7	ER CuNi	D1733	WSG-CuNi 10 Fe
		Non ferrous	Bronze C	A5.8	RB CuZn-A	1044	CU 304
	Gas welding	Non ferrous	Bronze F	A5.8	RB CuZn-A	1044	CU 301
	Gas welding	Non ferrous	Bronze P		RB CuZn-A	1044	CU 306
276	Gas welding	Non ferrous	Autobronze	A5.8	RB CuZn-A	1044	CU 306
277	Gas welding	Non ferrous	Bronze N		RB CuZn-D	1044	CU 305
278	Gas welding	Non ferrous	Phosphorbr. 92-8	A5.8	B CuP-2	1044	CP 202
279	Gas welding	Non ferrous	Phosphorbr. 93-7	A5.8	B CuP-2	1044	CP 202
280	Gas welding	Non ferrous	Phosphorbr. 94-6	A5.8	B CuP-2	1044	CP 202
281	Gas welding	Non ferrous	L-Ag 20	-	-	1044	AG 206
281	Gas welding	Non ferrous	L-Ag 20 Cd	-	-	1044	AG 309
281	Gas welding	Non ferrous	L-Ag 25	-	-	1044	AG 205
281	Gas welding	Non ferrous	L-Ag 25 Sn	A5.8	B Ag-37	1044	AG 108
281	Gas welding	Non ferrous	L-Ag 30	A5.8	B Ag-20	1044	AG 204
281	Gas welding	Non ferrous	L-Ag 34 Cd	A5.8	B Ag-2	1044	AG 305
281	Gas welding	Non ferrous	L-Ag 44	A5.8	B Ag-5	1044	AG 203
281	Gas welding	Non ferrous	L-Ag 45 Cd	A5.8	B Ag-1	1044	AG 302
281	Gas welding	Non ferrous	L-Ag 60	-	-	1044	AG 202
281	Gas welding	Non ferrous	L-Ag 64	A5.8	B Ag-9	1044	AG 201
282	Gas welding	Non ferrous	L-Ag2 P	A5.8	B CuP-6	1044	CP 105
283	Gas welding	Non ferrous	L-Ag5 P	A5.8	B CuP-3	1044	CP 104
284	Gas welding	Non ferrous	L-Ag15 P	A5.8	B CuP-5	1044	CP 102
285	Gas welding	Non ferrous	L-Ag 30 Cd	A5.8	B Ag-2a	1044	AG 306
286	Gas welding	Non ferrous	L-Ag 34 Sn	A5.8	B Ag-35	1044	AG 106
287	Gas welding	Non ferrous	L-Ag 40 Cd		-	1044	AG 304
288	Gas welding	Non ferrous	L-Ag 45 Sn	A5.8	B Ag-36	1044	AG 104
289	Gas welding	Non ferrous	L-Ag 38 Sn	A5.8	B Ag34	1044	AG 105
289	Gas welding	Non ferrous	L-Ag 50 Cd		B Ag-1a		AG 301
290	Gas welding	Non ferrous	<u>L-Ag 55 Sn</u>	A5.8	B Ag-7	1044	AG 103
291	Gas welding	Non ferrous	Bronze flux		-		FH 21
	Gas welding	Non ferrous	Aluminium flux		-		FH 11
291	Gas welding	Non ferrous	Cast Iron flux		-	1045	FH 21
291	Gas welding	Non ferrous	Silver solder flux (F)		-		FH 10
291	Gas welding	Non ferrous	Y-flux	-	-	1045	FH 10

				AWS Specification	EN Classification
Page	Process	Group	Productname	Spec	Class
292	GTAW	Accessories	W	A5.12 EWP	
292	GTAW	Accessories	WT 20	A5.12 EWTh-2	
292	GTAW	Accessories	<u>WT 40</u>	=	
292	GTAW	Accessories	WC 20	A5.12 EWCe-2	
292	GTAW	Accessories	WS 2	A5.12 EWG	
292	GTAW	Accessories	WL 20	A5.12 EWLa-1	
292	GTAW	Accessories	WZ 8	A5.12 EWZr-1	
293	CAC-A	Accessories	Carbon gouging rods		
294	-	Accessories	Hilcoflex cable		
295	-	Accessories	Anti Spatter		
296	-	Accessories	Thermometer 314C		
297	-	Accessories	<u>Soapstone</u>		
298	-	Accessories	<u>Adaptor</u>		

				AWS S	pecification	EN Cla	ssification
Page	Process	Group	Productname	Spec		Class	
298	-	Accessories	Adaptor	-	-		-
243	GMAW	Aluminium	AL 99,5	A5.10	ER 1100		MSG-AI 99,5
249	GTAW	Aluminium	AL 99,5 (TIG)	A5.10	ER 1100	D1732	WSG-AI 99,5
246	GMAW	Aluminium	AL Mg3	A5.10	ER 5754	D1732	MSG-Al Mg 3
252	GTAW	Aluminium	AL Mg3 (TIG)	A5.10	ER 5754	D1732	WSG-Al Mg 3
247	GMAW	Aluminium	AL Mg4,5 Mn	A5.10	ER 5183	D1732	MSG-Al Mg 4,5 Mn
253	GTAW	Aluminium	AL Mg4,5 Mn (TIG)	A5.10	ER 5183	D1732	WSG-Al Mg 4,5 Mn
248	GMAW	Aluminium	AL Mg5	A5.10	ER 5356	D1732	MSG-Al Mg 5
254	GTAW	Aluminium	AL Mg5 (TIG)	A5.10	ER 5356	D1732	WSG-Al Mg 5
245	GMAW	Aluminium	AL Si12	A5.10	ER 4047	D1732	MSG-Al Si 12
256	Gas welding	Aluminium	AL Si12 (OXY)	A5.10	ER 4047	D1732	G-Al Si 12
251	GTAW	Aluminium	AL Si12 (TIG)	A5.10	ER 4047		WSG-Al Si 12
244	GMAW	Aluminium	AL Si5	A5.10	ER 4043	D1732	
255	Gas welding	Aluminium	AL Si5 (OXY)	A5.10	ER 4043		G-Al Si 5
250	GTAW	Aluminium	AL Si5 (TIG)	A5.10	ER 4043	D1732	WSG-Al Si 5
268	GMAW	Non ferrous	Albronze 300	A5.7	ER CuMnNiAl	D1733	MSG-CuMn 13 Al 7
267	GMAW	Non ferrous	Albronze 35	A5.7	ER CuNiAl	D1733	MSG-CuAl 8 Ni 6
211	SMAW	Repair & M.	Albronze 8	A5.7	ER CuAl-A1	D1733	MSG CuAl 8
266	GMAW	Non ferrous	Albronze 8	A5.7	ER CuAl-A1	D1733	MSG-CuAl 8
	SMAW	Aluminium	Aluminil 99,8		E 1100	D1732	
242	SMAW	Aluminium	Aluminil Mn	A5.3	E 3003	D1732	EL-Al Mn 1
198	SMAW	Repair & M.	Aluminil Si12	A5.3	E 4047	D1732	EL-Al Si 12
241	SMAW	Aluminium	Aluminil Si12	A5.3	E 4047	D1732	EL-Al Si 12
197	SMAW	Repair & M.	Aluminil Si5	A5.3	E 4043		EL-Al Si 5
240	SMAW	Aluminium	Aluminil Si5	A5.3	E 4043	D1732	EL-Al Si 5
291	Gas welding	Non ferrous	Aluminium flux	-	-	1045	FH 11
295	-	Accessories	Anti Spatter	-	-		-
276	Gas welding	Non ferrous	<u>Autobronze</u>	A5.8	RB CuZn-A	1044	CU 306
	SMAW	Low alloyed	<u>B 12Mo</u>	A5.5	E 7018-A1	1599	E Mo 32 B H5
180	SMAW	Repair & M.	<u>B 19 CrMo</u>	A5.5	E 8018-B2	1599	E CrMo 1 B 42 H5
73	SMAW	Low alloyed	B 19CrMo	A5.5	E 8018-B2	1599	E CrMo 1 B 42 H5
	SMAW	Low alloyed	B 20CrMo	A5.5	E 9018-B3		E CrMo 2 B 42 H5
23	SMAW	Unalloyed	<u>Basic</u>	A5.1	E 7018	499	E 42 4 B 32 H5
	SMAW	Repair & M.	<u>Basic</u>		E 7018		E 42 4 B 32 H5
	SMAW	Unalloyed	Basic 160		E 7028		E 42 2 RB 53
	SMAW	Unalloyed	Basic 55		E 7016	499	E 42 2 RB 12 H10
	SMAW	Repair & M.	Basic 55	A5.1	E 7016	499	E 42 2 RB 12 H10
	SMAW	Low alloyed	Basic 70		E 8018-C3	499	E 46 6 1Ni B 32 H5
	SMAW	Unalloyed	Basic Directa		E 7018-1		E 42 5 B 42 H5
	SMAW	Unalloyed	Basic Super		E 7018-1		E 46 4 B 32 H5
	SMAW	Repair & M.	<u>Bronsil</u>		E CuSn-C		EL-CuSn 7
	SMAW	Non ferrous	<u>Bronsil</u>		E CuSn-C	D1733	
227	Gas welding	Repair & M.	Bronze C		RB CuZn-A	1044	
	Gas welding	Non ferrous	Bronze C		RB CuZn-A	1044	
	Gas welding	Repair & M.	Bronze F		RB CuZn-A	1044	
	Gas welding	Non ferrous	Bronze F		RB CuZn-A		CU 301
	Gas welding	Non ferrous	Bronze flux	-	-		FH 21
	Gas welding	Repair & M.	Bronze N		RB CuZn-D	1044	
277	Gas welding	Non ferrous	Bronze N		RB CuZn-D	1044	CU 305
275	Gas welding	Non ferrous	Bronze P	A5.8	RB CuZn-A	1044	CU 306

				AWS S	pecification	EN Cla	ssification
Page	Process	Group	Productname	Spec		Class	
17	SMAW	Unalloyed	Brown	A5.1	E 6012	499	E 42 0 RC 11
202	CAC-A	Repair & M.	Carbon gouging rods	-	=.	-	-
68	CAC-A	Cutting	Carbon gouging rods	-	=.	-	-
293	CAC-A	Accessories	Carbon gouging rods	-	-	-	=
291	Gas welding	Non ferrous	Cast Iron flux	-	-	1045	FH 21
104	SAW	Low alloyed	Cor-Ten	A5.23	EG	756	S 0
200	SMAW	Repair & M.	Cuni	A5.6	E CuNi	D1733	EL-CuNi 30 Mn
264	SMAW	Non ferrous	Cuni	A5.6	E CuNi	D1733	EL-CuNi 30 Mn
224	GTAW	Repair & M.	Cunifer 70-30	A5.7	ER CuNi		WSG CuNi30Fe
271	GTAW	Non ferrous	Cunifer 70-30	A5.7	ER CuNi	D1733	WSG-CuNi 30 Fe
272	GTAW	Non ferrous	Cunifer 90-10	A5.7	ER CuNi	D1733	WSG-CuNi 10 Fe
269	GMAW	Non ferrous	Cusi 3	A5.7	ER CuSi-A	D1733	MSG-CuSi 3
201	SMAW	Repair & M.	Cutil	-	-		-
67	SMAW	Cutting	Cutil	-	-	-	-
90	GTAW	Low alloyed	Fer Cor-Ten	A5.28	ER 80S-G	1668	W 46 2 W 0
53	Gas welding	Unalloyed	Fer G 1	A5.2	R 45	12536	01
54	Gas welding	Unalloyed	Fer G 2	A5.2	R 60	12536	0
55	Gas welding	Unalloyed	Fer G 3	A5.2	R 60-G	12536	O III
56	Gas welding	Unalloyed	Fer G 4	A5.2	R 60-G	12536	O IV
99	Gas welding	Low alloyed	Fer G 4	A5.2	R 60-G	12536	O IV
49	GTAW	Unalloyed	Fer SG 1	A5.18	ER 70S-3	1668	W 42 2 W 2 Si 1
50	GTAW	Unalloyed	Fer SG 1A	A5.18	ER 70S-2	1668	W 42 2 W 2 Ti
51	GTAW	Unalloyed	Fer SG 2	A5.18	ER 70S-6	1668	W 46 2 W 3 Si 1
216	GTAW	Repair & M.	Fer SG 2	A5.18	ER 70S-6	1668	W 46 2 W 3 Si 1
52	GTAW	Unalloyed	Fer SG 3	A5.18	ER 70S-6	1668	W 46 4 W 4 Si 1
217	GTAW	Repair & M.	Fer SG CrMo1	A5.28	ER 80S-B2	12070	W CrMo 1 Si
93	GTAW	Low alloyed	Fer SG CrMo1	A5.28	ER 80S-B2	12070	W CrMo 1 Si
94	GTAW	Low alloyed	Fer SG CrMo2	A5.28	ER 90S-B3	12070	W CrMo 2 Si
218	GTAW	Repair & M.	Fer SG CrMo5		ER 80S-B6		W CrMo 5 Si
	GTAW	Low alloyed	Fer SG CrMo5	A5.28	ER 80S-B6		W CrMo 5 Si
96	GTAW	Low alloyed	Fer SG CrMo9	A5.28	ER 80S-B8	12070	W CrMo 9 Si
92	GTAW		Fer SG Mo	A5.28	ER 80S-D2		W 46 2 W 2 Mo
92	GTAW	Low alloyed	Fer SG Mo	A5.28	ER 80S-D2		W MoSi
97	GTAW	Low alloyed	Fer SG Ni1		ER 80S-Ni1		W 46 6 W 3 Ni 1
	GTAW	Low alloyed	Fer SG Ni2,5	A5.28	ER 80S-Ni2		W 46 6 W 2 Ni 2
	Gas welding	Repair & M.	Fluxcored AL 99,5		ER 1100	D1732	G-Al 99,5
	Gas welding	Aluminium	Fluxcored AL 99,5		ER 1100		G-AI 99,5
	Gas welding	Repair & M.	Fluxcored Al Si5		ER 4043		G-Al Si 5
	Gas welding	Aluminium	Fluxcored AL Si5		ER 4043		G-Al Si 5
	GMAW	Stainless	G NiCu7		ER NiCu-7		MSG-NiCu30MnTi
	SAW	Unalloyed	<u>H 100</u>		EM 12	756	
	SAW	Low alloyed	<u>H 100</u>		EM 12	756	
	SAW	Low alloyed	<u>H 100CrMo1</u>	A5.23			S CrMo 1
	SAW	Low alloyed	<u>H 100Mo</u>	A5.23			S 2 Mo
	SAW	Low alloyed	<u>H 100Mo</u>	A5.23		12070	S Mo
	SAW	Low alloyed	<u>H 100Ni1</u>		E Ni 1		S 2 Ni 1
	SAW	Low alloyed	<u>H 100Ni2</u>		E Ni 2		S 2 Ni 2
		Unalloyed	<u>H 100Si</u>	A5.17	EM 12K		S2 Si
101	SAW	Low alloyed	<u>H 150</u>	-	-	756	S 3

				AWS Specificatio	n EN Classification
Page	Process	Group	Productname	Spec	Class
	SAW	Low alloyed	H 150NiCrMo1	A5.23 EG	756 S 0
	SAW	Low alloyed	H 150Si	A5.17 EH 12K	756 S 3 Si
	SAW	Low alloyed	H 150Si	A5.17 EM 12K	756 S 3 Si
	SAW	Low alloyed	H 200	A5.17 EH 14	756 S 4
	SAW	Unalloyed	H 60	A5.17 EL 12	756 S 1
	SAW	Low alloyed	H 60CrMo2	A5.23 EB 3	12070 S CrMo 2
	SMAW	Repair & M.	H-350		D8555 MSG 2-GZ-400
	SMAW	Repair & M.	H-600		D8555 MSG 6-GZ-60-S
	SMAW	Repair & M.	Hardmelt 350		D8555 E 1-UM-350
	SMAW	Repair & M.	Hardmelt 600		D8555 E 6-UM-60-GP
	SMAW	Repair & M.	Hardmelt 620	A5.13 E Fe-5B	D8555 E 4-UM-60-ST
	SMAW	Repair & M.	Hardmelt 638		D8555 E 10-UM-60-GR
	SMAW	Repair & M.	Hardmelt 643		D8555 E 10-UM-65-GR
	SMAW	Repair & M.	Hardmelt 645		D8555 E 10-UM-65-GR
	SMAW	Stainless	Hilchrome 2209	A5.4 E 2209-17	1600 E 22 9 3 L R 22
	SMAW	Stainless	Hilchrome 307R	A5.4 E 307-16	1600 E 18 8 Mn R 12
	SMAW	Repair & M.	Hilchrome 307R	A5.4 E 307-16	1600 E 18 8 Mn R 12
	SMAW	Stainless	Hilchrome 308R	A5.4 E 308L-17	
	SMAW	Stainless	Hilchrome 309MoR	A5.4 E 309MoL-1	
	SMAW	Stainless	Hilchrome 309R	A5.4 E 309L-17	
	SMAW	Stainless	Hilchrome 310R	A5.4 E 310-16	1600 E 25 20 R 12
	SMAW	Stainless	Hilchrome 312R	A5.4 E 312-17	1600 E 29 9 R 32
	SMAW	Repair & M.	Hilchrome 312R	A5.4 E 312-17	1600 E 29 9 R 32
	SMAW	Stainless	Hilchrome 316R	A5.4 E 316L-17	1600 E 19 12 3 L R 12
	SMAW	Stainless	Hilchrome 316R-V	A5.4 E 316L-17	1600 E 19 12 3 L R 12
	SMAW	Stainless	Hilchrome 318R	A5.4 E 318-17	1600 E 19 12 3 Nb R 32
		Stainless	Hilchrome 347R	A5.4 E 347-17	1600 E 19 9 Nb R 32
	SMAW	Stainless	Hilchrome 600	A5.11 E NiCrFe-3	
	SMAW	Repair & M.	Hilchrome 600	A5.11 E NiCrFe-3	
	SMAW	Repair & M.	Hilchrome 600S	A5.11 E NiCrFe-3	
	SMAW	Stainless	Hilchrome 625	A5.11 E NiCrMo-	
	GMAW	Stainless	Hilchrome G2209	A5.9 ER 2209	12072 G 22 9 3 L
	SMAW	Repair & M.	Hilchrome G307	A5.9 ER 307	12072 G 18 8 Mn
	GMAW	Stainless	Hilchrome G307	A5.9 ER 307	12072 G 18 8 Mn
	GMAW	Stainless	Hilchrome G308L Si	A5.9 ER 308LSi	
	GMAW	Stainless	Hilchrome G309L Si	A5.9 ER 309LSi	
	SMAW	Repair & M.	Hilchrome G312	A5.9 ER 312	12072 G 29 9
	GMAW	Stainless	Hilchrome G312	A5.9 ER 312	12072 G 29 9
	GMAW	Stainless	Hilchrome G316L Si	A5.9 ER 316LSi	
	SMAW	Repair & M.	Hilchrome G600	A5.14 ER NiCr-3	D1736 MSG-NiCr 20 Nb
	GMAW	Stainless	Hilchrome G600	A5.14 ER NiCr-3	D1736 MSG-NiCr20Nb
	GMAW	Stainless	Hilchrome G625	A5.14 ER NiCrMo-	
	SAW	Stainless	Hilchrome S2209	A5.9 ER 2209	12072 S 22 9 3 L N
	SAW	Stainless	Hilchrome S307	A5.9 ER 307	12072 S 18 8 Mn
	SAW	Stainless	Hilchrome S308L	A5.9 ER 308L	12072 S 19 9 L
	SAW	Stainless	Hilchrome S309L	A5.9 ER 309L	12072 S 23 12 L
167	SAW	Stainless	Hilchrome S316L	A5.9 ER 316L	12072 S 19 12 3 L
160	GTAW	Stainless	Hilchrome W2209	A5.9 ER 2209	12072 W 22 9 3 L
151		Stainless	Hilchrome W307	A5.9 ER 307	12072 W 18 8 Mn
101	OIAM	Granifess	I IIIOIIIOIIIG VVOUI	AU.U LIN JUI	ILUIL VV IUUIVIII

				AWS Specification	EN Classfication	
Page	Process	Group	Productname	Spec	Class	
	GTAW	Repair & M.	Hilchrome W307	A5.9 ER 307	12072 W 18 8 Mn	
156	GTAW	Stainless	Hilchrome W308L Si	A5.9 ER 308LSi	12072 W 19 9 L Si	
152	GTAW	Stainless	Hilchrome W309L	A5.9 ER 309L	12072 W 23 12 L	
153	GTAW	Stainless	Hilchrome W309L Si	A5.9 ER 309LSi	12072 W 23 12 L Si	
154	GTAW	Stainless	Hilchrome W309LMo	A5.9 ER 309LMo	12072 W 23 12 2 L Si	
155	GTAW	Stainless	Hilchrome W312	A5.9 ER 312	12072 W 29 9	
220	GTAW	Repair & M.	Hilchrome W312	A5.9 ER 312	12072 W 29 9	
158	GTAW	Stainless	Hilchrome W316L Si	A5.9 ER 316LSi	12072 W 19 12 3 L Si	
159	GTAW	Stainless	Hilchrome W318 Si	A5.9 ER 318Si	12072 W 19 12 3 Nb Si	
157	GTAW	Stainless	Hilchrome W347 Si	A5.9 ER 347Si	12072 W 19 9 Nb Si	
161	GTAW	Stainless	Hilchrome W600	A5.14 ER NiCr-3	D1736 WSG-NiCr20Nb	
221	GTAW	Repair & M.	Hilchrome W600	A5.14 ER NiCr-3	D1736 WSG NiCr 20 Nb	
161	GTAW	Stainless	Hilchrome W625	A5.14 ER NiCrMo-3	D1736 WSG-NiCr21Mo9Nb	
294	-	Accessories	Hilcoflex cable			
60	SAW	Unalloyed	Hilcord 100	A5.18 EC 1	756 S 0	
	FCAW	Unalloyed	Hilcord 2040	A5.20 E 71T-GS	758 T 42 A Z N 2	
43	FCAW	Unalloyed	Hilcord 2048	A5.20 E 71T-8	758 T 42 2 Z N 1	
38	FCAW	Unalloyed	Hilcord 40	A5.20 E 71T-1	758 T 46 3 P M 1 H5	
		•		E 71T-12 M		
39	FCAW	Unalloyed	Hilcord 40C	A5.20 E 71T-1	758 T 46 2 P C 1 H5	
40	FCAW	Unalloyed	Hilcord 41	A5.20 E 71T-1 M	758 T 42 2 P M 1 H5	
41	FCAW	Unalloyed	Hilcord 41C	A5.20 E 71T-1	758 T 42 2 P C 1 H5	
88	FCAW	Low alloyed	Hilcord 43	A5.29 E 81T-1 Ni1	758 T 50 5 1Ni P M 1 H5	
89	FCAW	Low alloyed	Hilcord 44	A5.29 E 81T-1 Ni1	758 T 50 5 1Ni P M 1 H5	
46	FCAW	Unalloyed	Hilcord 50	A5.18 E 70C-6 M	758 T 42 2 M M 2 H5	
44	FCAW	Unalloyed	Hilcord 51	A5.20 E 70T-5	758 T 42 4 B C 3 H5	
				E 70T-5 M	T 42 4 B M 3 H5	
212	FCAW	Repair & M.	Hilcord 51	A5.20 E 70T-5	758 T 42 4 B C 3 H5	
				E 70T-5 M	T 42 4 B M 3 H5	
45	FCAW	Unalloyed	Hilcord 51.71	A5.20 E 71T-5	758 T 42 4 B C 1 H5	
				E 71T-5 M	T 42 5 B M 1 H5	
	FCAW	Unalloyed	Hilcord 52	A5.18 E 70C-6 M	758 T 46 2 M M 1 H5	
	FCAW	Unalloyed	Hilcord 54	A5.18 E 70C-6 M	758 T 46 4 M M 1 H5	
	FCAW	Low alloyed	Hilcord 59M	A5.28 E 110C-G	12535 T 69 4 Mn2NiCrMo MM 2	
	FCAW	Repair & M.	Hilcord 600		D8555 MF 6-60	
	FCAW	Low alloyed	Hilcord 60M	A5.28 E 80C-G	758 T 46 2 Mo M M 2 H5	
	FCAW	Low alloyed	Hilcord 60M	A5.28 E 80C-G	12071 T Mo M M 2 H5	
	FCAW	Repair & M.	Hilcord 61M	A5.28 E 80C-G	12071 T CrMo 1 M M 2 H5	
	FCAW	Low alloyed	Hilcord 61M	A5.28 E 80C-G	12071 T CrMo 1 M M 2 H5	
	FCAW	Low alloyed	Hilcord 62M	A5.28 E 90C-G	12071 T CrMo 2 M M 2 H5	
	FCAW	Stainless	Hilcord 81	A5.22 E 308LT 1-4		
	FCAW	Stainless	Hilcord 81	A5.22 E 308LT 0-4		
	FCAW	Stainless	Hilcord 81	A5.22 E 308LT 1-1		
	FCAW	Stainless	Hilcord 81	A5.22 E 308LT 0-1		
	FCAW	Stainless	Hilcord 82	A5.22 E 307T0-G	12073 T 18 8 Mn R M 3	
	FCAW	Repair & M.	Hilcord 82	A5.22 E 307T0-G	12073 T 18 8 Mn R M 3	
	FCAW	Stainless	Hilcord 83	A5.22 E 316LT 1-4		
149	FCAW	Stainless	Hilcord 83	A5.22 E 316LT 0-4	12073 T 19 12 3 LRM 3	

In alphabetical order

				AWS S	pecification	FN Cla	ssification
Page	Process	Group	Productname	Spec	poomounom	Class	oomounon
	FCAW	Stainless	Hilcord 83		E 316LT 1-1		T 19 12 3 LPC 1
	FCAW	Stainless	Hilcord 83		E 316LT 0-1		T 19 12 3 LRC 3
	FCAW	Stainless	Hilcord 83LT-1		E 316LT 1-4		T 19 12 3 LPM 1
	FCAW	Stainless	Hilcord 83LT-1		E 316LT 1-1		T 19 12 3 LPC 1
	FCAW	Stainless	Hilcord 85		E 309LT 1-4		T 23 12 LPM 1
	FCAW	Stainless	Hilcord 85		E 309LT 0-4		T 23 12 LRM 3
	FCAW	Stainless	Hilcord 85		E 309LT 1-1	12073	
	FCAW	Stainless	Hilcord 85		E 309LT 0-1	12073	T 23 12 LRC 3
	FCAW	Stainless	Hilcord 85Mo		E 309MoLT 1-4	12073	
	FCAW	Stainless	Hilcord 85Mo		E 309MoLT 0-4	12073	T 23 12 2 LRM 3
	FCAW	Stainless	Hilcord 85Mo	A5.22	E 309MoLT 1-1		T 23 12 2 LPC 1
	FCAW	Stainless	Hilcord 85Mo		E 309MoLT 0-1		T 23 12 2 LRC 3
	FCAW	Low alloyed	Hilcord Cor-Ten		E 70T5-G		T 42 4 1Ni B H5
	SMAW	Repair & M.	Hilcostel 12E		E CoCr-B		E 20-UM-50-CSTZ
	GTAW	Repair & M.	Hilcostel 12T		R CoCr-B		WSG 20-GO-50-CSTZ
	Gas welding	Repair & M.	Hilcostel 12T		R CoCr-B		G 20-GO-50-CSTZ
	SMAW	Repair & M.	Hilcostel 6E		E CoCr-A		E 20-UM-40-CTZ
	GTAW	Repair & M.	Hilcostel 6T		R CoCr-A	D8555	
	Gas welding	Repair & M.	Hilcostel 6T		R CoCr-A	D8555	
	SAW	Stainless	HW 100	-		760	S A AB 2 78 9Cr AC
232	SAW	Repair & M.	HW 100	-	-		S A AB 2 78 9Cr AC
	SAW	Stainless	HW 120	-	-		S A FB 2 53 AC
61	SAW	Unalloyed	HW 150	-	-		S F MS 1 67 AC
62	SAW	Unalloyed	HW 155	-	-	760	S F MS 1 67 AC
66	SAW	Unalloyed	HW 400	-	_		S A AR 3 CrMo AC
233	SAW	Repair & M.	HW 400	-	-	760	S A AR 3 CrMo AC
63	SAW	Unalloyed	HW 430	-	-		S A AR 1 87 AC
231	SAW	Repair & M.	HW 430	-	-	760	S A AR 1 87 AC
64	SAW	Unalloyed	<u>HW 450</u>	-	-	760	S A MS 1 99 AC
65	SAW	Unalloyed	HW 530	-	-	760	S A AB 1 67 AC H5
111	SAW	Low alloyed	<u>HW 530</u>	-	-		S A AB 1 67 AC H5
112,113	SAW	Low alloyed	<u>HW 580</u>	-			S A FB 1 55 AC H5
36	GMAW	Unalloyed	<u>K 60</u>	A5.18	ER 70S-6	440	G 42 2 C G3 Si 1
							G 46 2 M G3 Si 1
	GMAW	Low alloyed	<u>K 80</u>		ER 110S-G		-
	GTAW	Low alloyed	K 80 (TIG)		ER 110S-G		-
	Gas welding	Non ferrous	<u>L-Ag 20</u>	-			AG 206
281	Gas welding	Non ferrous	L-Ag 20 Cd	-			AG 309
281	Gas welding	Non ferrous	L-Ag 25				AG 205
281	Gas welding	Non ferrous	L-Ag 25 Sn		B Ag-37		AG 108
281	Gas welding	Non ferrous	L-Ag 30		B Ag-20		AG 204
	Gas welding	Non ferrous	L-Ag 30 Cd		B Ag-2a		AG 306
	Gas welding	Non ferrous	L-Ag 34 Cd		B Ag-2		AG 305
	Gas welding	Non ferrous	L-Ag 34 Sn		B Ag-35		AG 106
	Gas welding	Non ferrous	L-Ag 38 Sn		B Ag34		AG 105
	Gas welding	Non ferrous	L-Ag 40 Cd	- A.F. O.			AG 304
281	Gas welding	Non ferrous	L-Ag 44		B Ag-5		AG 203
281	Gas welding	Non ferrous	L-Ag 45 Cd		B Ag-1		AG 302
288	Gas welding	Non ferrous	<u>L-Ag 45 Sn</u>	A5.8	B Ag-36	1044	AG 104

				AWS Specification	EN Classification	
Page	Process	Group	Productname	Spec	Class	
	Gas welding	Non ferrous	L-Aq 50 Cd	A5.8 B Ag-1a	1044 AG 301	
	Gas welding	Non ferrous	L-Ag 55 Sn	A5.8 B Ag-7	1044 AG 103	
	Gas welding	Non ferrous	L-Ag 60		1044 AG 202	
	Gas welding	Non ferrous	L-Ag 64	A5.8 B Ag-9	1044 AG 201	
	Gas welding	Non ferrous	L-Ag15 P	A5.8 B CuP-5	1044 CP 102	
	Gas welding	Non ferrous	L-Aq2 P	A5.8 B CuP-6	1044 CP 105	
	Gas welding	Non ferrous	L-Ag5 P	A5.8 B CuP-3	1044 CP 104	
	SMAW	Repair & M.	Manganil	A5.13 E FeMn-B	D8555 E 7-UM-200-KP	
	SMAW	Repair & M.	Nickel Iron	A5.15 E Ni Fe-Cl	D8573 E Ni Fe BG 22	
	SMAW	Stainless	NiCu7	A5.11 E NiCu-7	D1736 EL-NiCu30Mn	
19	SMAW	Unalloyed	Performa	A5.1 E 6013	499 E 42 0 RC 11	
177	SMAW	Repair & M.	Performa	A5.1 E 6013	499 E 42 0 RC 11	
	Gas welding	Non ferrous	Phosphorbr. 92-8	A5.8 B CuP-2	1044 CP 202	
	Gas welding	Repair & M.	Phosphorbr. 93-7	A5.8 B CuP-2	1044 CP 202	
	Gas welding	Non ferrous	Phosphorbr. 93-7	A5.8 B CuP-2	1044 CP 202	
	Gas welding	Non ferrous	Phosphorbr. 94-6	A5.8 B CuP-2	1044 CP 202	
	SMAW	Unalloyed	Pipeweld 6010	A5.1 E 6010	499 E 38 3 C 21	
31	SMAW	Unalloyed	Pipeweld 6010	A5.1 E 6010	499 E 38 3 C 21	
32	SMAW	Unalloyed	Pipeweld 8010	A5.5 E 8010-P1	499 E 46 3 C 25	
193	SMAW	Repair & M.	Pure Nickel	A5.15 E Ni-CI	D8573 E Ni BG 22	
16	SMAW	Unalloyed	Red	A5.1 E 6013	499 E 42 0 RC 11	
15	SMAW	Unalloyed	Red Extra	A5.1 E 6013	499 E 42 0 RC 11	
176	SMAW	Repair & M.	Red Extra	A5.1 E 6013	499 E 42 0 RC 11	
26	SMAW	Unalloyed	Regina 140	A5.1 E 7024	499 E 42 0 RR 53	
27	SMAW	Unalloyed	Regina 150	A5.1 E 7024-1	499 E 42 2 RA 53	
28	SMAW	Unalloyed	Regina 160	A5.1 E 7024	499 E 42 0 RR 53	
30	SMAW	Unalloyed	Regina 180	A5.1 E 7024	499 E 42 0 RR 73	
33	GMAW	Unalloyed	<u>SG 1</u>	A5.18 ER 70S-3	440 G 42 2 M G2 Si 1	
34	GMAW	Unalloyed	SG 1A Superflow	A5.18 ER 70S-2	440 G 42 2 M G2 Ti	
35	GMAW	Unalloyed	<u>SG 2</u>	A5.18 ER 70S-6	440 G 42 2 C G3 Si 1 G 42 4 M G3 Si 1	
203	GMAW	Repair & M.	SG 2	A5.18 ER 70S-6	440 G 42 2 C G3 Si 1 G 42 4 M G3 Si 1	
37	GMAW	Unalloyed	<u>SG 3</u>	A5.18 ER 70S-6	440 G 46 2 C G4 Si 1	
					G 46 4 M G4 Si 1	
76	GMAW	Low alloyed	SG Cor-Ten	A5.28 ER 80S-G	440 G 42 2 C G 0	
	014414		20.011.4	45.00 50.00 00	G 46 2 M G 0	
	SMAW	Repair & M.	SG CrMo1	A5.28 ER 80S-B2	12070 G CrMo 1 Si	
	GMAW	Low alloyed	SG CrMo1	A5.28 ER 80S-B2	12070 G CrMo 1 Si	
	GMAW	Low alloyed	SG CrMo2	A5.28 ER 90S-B3	12070 G CrMo 2 Si	
	GMAW	Low alloyed	SG Mo	A5.28 ER 70S-A1	440 G 46 2 M G 2 Mo	
	GMAW	Low alloyed	SG Mo	A5.28 ER 70S-A1	12070 G MoSi	
81	GMAW	Low alloyed	SG Ni1	A5.28 ER 80S-Ni1	440 G 46 6 M G3 Ni 1	
	GMAW	Low alloyed	SG Ni2,5	A5.28 ER 80S-Ni2	440 G 46 6 M G2 Ni 2 1045 FH 10	
291 297	Gas welding	Non ferrous	Silver solder flux (F)		1040 FFI 10	
	SMAW	Accessories	<u>Soapstone</u>		D8555 E 10-UM-60-GR	
296		Repair & M. Accessories	Sugarhard Thermometer 314C		DOUGO E IU-UNI-DU-GR	
	SMAW	Repair & M.	Tinbronze 94-6	A5.7 ER CuSn-A	D1733 MSG CuSn 6	
	GMAW	Non ferrous	Tinbronze 94-6	A5.7 ER CuSn-A	D1733 MSG-CuSn 6	
	GTAW	Non ferrous	Tinbronze 94-6 (TIG)	A5.7 ER CuSn-A	D1733 WSG-CuSn 6	
2/0	GIAW	INUITIEITOUS	THIDIUHZE 94-0 (TIG)	AU. ER CUOTI-A	DITOS WOG-CUOITO	

Data-sheets

				AWS Specification		EN Cla	ssification
Page	Process	Group	Productname	Spec		Class	
20	SMAW	Unalloyed	<u>Velora</u>	A5.1	E 6013	499	E 42 0 RR 12
21	SMAW	Unalloyed	<u>Velveta</u>	A5.1	E 6013	499	E 42 0 RR 32
292	GTAW	Accessories	<u>W</u>	A5.12	EWP	-	-
163	GTAW	Stainless	W NiCu7	A5.14	ER NiCu-7	D1736	WSG-NiCu30MnTi
292	GTAW	Accessories	WC 20	A5.12	EWCe-2	-	-
292	GTAW	Accessories	<u>WL 20</u>	A5.12	EWLa-1	-	-
292	GTAW	Accessories	WS 2	A5.12	EWG	-	-
292	GTAW	Accessories	<u>WT 20</u>	A5.12	EWTh-2	-	-
292	GTAW	Accessories	<u>WT 40</u>		-	-	-
292	GTAW	Accessories	<u>WZ 8</u>	A5.12	EWZr-1	-	-
291	Gas welding	Non ferrous	Y-flux	-	-	1045	FH 10